@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: WP Smart Contracts
Website: wpsmartcontracts.com
Platform: ETH, BSC

Language: Solidity

DEIK April 29th, 2022

https://wpsmartcontracts.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 13
AUt FINAINGS oo e 14
@70 o T3 1017 T o 19
(@ 0] 1Y/ =1 1 T To [o] 0T) 20
DISCIAIMEIS ... e 22
Appendix
o Code FIoW Diagramououoiiii s 23
o Shther RESUIS LOGuiiiiii e 26
e Solidity staticanalysis ... 31
® SOININt LiNtEr oo 37

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the WP Smart Contracts team to perform the Security
audit of the Matcha(ERC721) and Almond(staking) smart contracts code. The audit has
been performed using manual analysis as well as using automated software tools. This
report presents all the findings regarding the audit performed on April 29th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e The WP Smart Contracts ecosystem is expanding with more than a dozen
Ethereum Virtual Machine (EVM) compatible networks.

e The WP Smart Contracts provides the smart contract solutions to the wordpress
users. They develop various WP plugins which lets WP websites use the smart
contract deployment quickly. We audited their Matcha(ERC721) and

Almond(staking) smart contracts.

Audit scope

Name Code Review and Security Analysis Report for
WP Smart Contracts Protocol Smart Contracts

Platform Multiple blockchain platforms / Solidity

File 1 StakesAlmond.sol

File 1 MD5 Hash 77BF055AB6BE4B98AB710BE95CB2D218

File 2 ERC721Matcha.sol

File 2 MD5 Hash EB0440D80D8FF6CCEQAB229C5602A7B4

Audit Date April 29th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x590441be0777b43b441c1ab6ae78e530df741778#code
https://etherscan.io/address/0x7b68b84e52c6161b321c777836309bcaf686eb91#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Almond- Stakes.sol YES, This is valid.
e StakesAlmond has functions like: start, end, set,

ledger_length, etc.

ERC721Matcha.sol YES, This is valid.
e ERC721Matcha has functions like: highestBid,

auctionFinalize, canFinalize, canWithdraw, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed

Function input parameters lack of check Moderated
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the WP Smart Contracts Protocol are part of its logical algorithm. A library
is a different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the WP Smart Contracts Protocol.

The WP Smart Contracts team has not provided unit test scripts, which would have helped

to determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a WP Smart Contracts Protocol smart contract code in the form of a
BSCScan web link and Etherscan web link. The hash of that code is mentioned above in
the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://wpsmartcontracts.com which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://wpsmartcontracts.com

AS-IS overview

StakesAlmond.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [isOwner modifier Passed No Issue
3 | changeOwner write access by isOwner No Issue
4 | getOwner read Passed No Issue
5 [nonReentrant modifier Passed No Issue
6 | start external Passed No Issue
7 |end write Passed No Issue
8 [set write access by isOwner No Issue
9 | get gains read Passed No Issue
10 | get gains2 read Passed No Issue
11 [ledger length read Passed No Issue

ERC721Matcha.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | exists read Passed No Issue
3 | tokensOfOwner read Passed No Issue
4 | setTokenURI write Passed No Issue
5 [autoMint write access only Minter No Issue
6 | transfer write Passed No Issue
7 | nonReentrant modifier Passed No Issue
8 | canSell read Passed No Issue
9 [sell write Passed No Issue
10 | getPrice read Passed No Issue
11 | canBuy read Passed No Issue
12 | buy write Passed No Issue
13 | canAuction read Passed No Issue
14 | createAuction write Passed No Issue
15 | canBid read Passed No Issue
16 | bid write Passed No Issue
17 | canWithdraw read Passed No Issue
18 | withdraw write Passed No Issue
19 | canFinalize read Passed No Issue
20 | auctionFinalize write Passed No Issue
21 | highestBidder read Passed No Issue
22 | highestBid read Passed No Issue
23 | callOptionalReturn write Passed No Issue
24 | updateAdmin write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) data - ERC721Matcha.sol

data.

Resolution: data.

Very Low / Informational / Best practices:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e set: StakesAlmond owner can set values like: ratio1 ,ratio2, lower amount, maturity

rate, interest rate, penalization, etc.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of files. And we have used all possible tests
based on given objects as files. We had observed some issues in the smart contracts, but
those issues are not critical ones. So, the smart contracts are ready for the mainnet

deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - WP Smart Contracts Protocol

!

StakesAlmond Diagram

@ StakesAlmond

Owner
ReentrancyGuard

inSafeMath for wint256

O EIP20 asset

O EIP20 asset?

O uints interest_rate

O uints interest_rate2

O Lint256 maturity

O uintd penalization

O Uit 256 lower _amount
O Uint256 ratiol

2 uint256 ratio2

O address==null ledger

(© Er20

EiP2Qinterface

O uint256 MAX_UINT256

O address==uUint256 balances

O address=>mapping address==uint256 allowed
O string name

C uintd decimals

2 string symbol

@ _ constructor__()
@ transfer()

@ _ constructor__()
@ start()

@ end()

o setf)

@ Qget_gains()

@ Qget_gains2()

@ Qledger_length()

@ transferFrom()
@ QbalanceOf()
@ approve()

@ Qalowance()

flfor wint256

v
@ SafeMath

‘:\:_ ..I
i

@ Owner

- ©E|P2mnterface

< Qadd()
< Qeub()
< gumul
< Qiv()

< Qmod()

O address owner

@ _ _constructor__()
@ changeQwner()
@ QgetOwner()

© ReentrancyGuard
O Uint256 totalSupply

O uint256 _NOT_ENTERED
O uint256 _ENTERED © QbalanceOf()
Lint756 status @ transfer()

O uint256 _stat
L @ transferFrom()
@ _ constructor__() @ approvel)

@ Qallowance()

This is a private and confidential document. No part of this document should

be disclosed to thir

d party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

ERC721Matcha Diagram

ERC721
ERC721Enumerable
ERCT21Metacats
ERCT21Mintable
ERCT21MetadataMintable

7 uint256 autoT okenid

/ @ERC721 MatadataMintable

ERCT21
/ ERCT21Metadata |
ol

© PntIth TokenLIRK)
g A

@ ERC721Full e

(©) erc721Matcha

ERCT21Fuil
ReentrancyGuard

@nSafelath for uint256
InAddiress for Jodress

© address admin

callCptionalReturn()
© updsteAdming)

(©@)ErcT21Mintable

© bool anyonsCanhlint

ERCT21
Minterfole

© _setMimableOption()

< _registerinterface()

v
.

5

@ 1ercies

® Qsupportsinterface)

(1) 1ERET21 Racaiver

©® onERCT21Received)

!]
I i
I]
I]
I]
I]
I]
I '
I '
I]
I]
I]
I]
I '
I '
I '
I '
I i
I]
i i
I]
I]
I]
© min() |)
/ I
| . \ ® Cucanbint() | |
/ / \ | I i i
~d I \ | 1
/ | \ A f \ ifor address |
< \ - \ i]
- \ RN { \ | |
(€ Ercrz1EnUmeratie | A | ™~ [\ ! '
/ \ ~. | ' 1

ERC1ES \ | ~J ' 1

ERCT21 (©) erc \ | .~ < |]

IERCT2IEnUmeratie \ | oA ! !

ERC165 \ 2 = I]
ERe1e | @) minerrole ! !
01 sodress==null _ownedTokens IERCT21Meradata \ BARoka for Roka Foke I '
o \ | | — ' '
O uint256 _alToke / Roles imer: I 1
O Uin256->uni256 _allfokensindex O string _name \ | [e I ! 2
O bytesd INTERFACE ID_ERC721_ENUMERABLE O string _symiol \ | | © _construetor__() | Jor w256
- O uint256=>string _tokenURls \ { Qishinter() I 1
© __constructor __() O bytes4 INTERFACE_D_FRC721_METADATA \ ‘ / @ addMinter() [1

TtokenOrOwnerByindex() —_— = teren ot \ ® rencunceiner()

QatalSupply() & addMinter0) !)
© QuokenByindex())\ | © “removeMinter() | |
© _transferFrom() \ = L !
@ _mint() \ 1 '
© T_tokensOfowner() \ : | 0
B _addTakenToOwnerEnumeration() \ ! !
= “acdTokenToANTokensErumeration) \ ' | 0
B _remaveTokenFramOwnerEnumer ation() \ | ! '

~ \, / I !

/ | . | [! I]

/ | \ I]

- . 1 \for Roles Role | 1

/ \ '

/ -~ - I]

. / ~ < i ! I '

I]

/ | @ ercTn1 ! | .

i | Emcies 1 | |

I IERCT21 | '
| i

[| anSafelath for uint?56 [: :

| MAddress for address ' I 1

i | s Counters for Counters. Counter [| |
| i '

| | O bytes4 _ERC721_RECEIVED 1 : :

O uint2 Owiner 7) '
i O uint256=>address _tokenApprovals , ,
(€) IErCT21EnUmerable | (€) 1ErC721 Metadata © address=>Counters Courter_
| O adaress—>mapping addres: @ (= ! !
IERCTZ1 IERCT21 © bylesé INTERFACE, T2 |)
® CctalSuppIvD © Qname(® _constructor__() et | !
© CiokenOfOwnerByindex() ® Gsymboli) < Qhas() ! |
® QgokenByindex(} © AtokenURIc ' i
- ']
| \ pproved} '
\ \ setApprovalFor All) ' I
f \ QisApprovedForAll() i 0
\ \ ']
\ \ © safeTransferFrom() ']
\ N \ ists() |]
\ *It \ Q_isApprovedOr Owner() i 1
\ \ I]
\ | " \ ['
\ | \ “© _ehackORERCT 21 Received() ' 1
\ \ | m Zctearnpprovaiy N i '
\ N . ,
\ \ \ / ' \ ']
. |- /
\ ; \for Counters. Counter | ' !
& ~ s % ' k N ' '
- T { 1 ' N ' 1
M 1 1 ~ I 1
v IERC721
2 (@) Ercies O] v . ,
IERC165 W ' v "
IERC165 (@) counters ']
® QuaanceOr) ! ® Address 1
® Qownerof() | for wint?56 1
INTERFACE r [- I
g mﬂ-)m D ERC‘|fh-‘ : afeTransferFrom() o Queurrent() ' < QisContract()
| O bytesd=rbool _supportadinterfaces | 0 = ing . < QtoPayabie() :
© __construetor __() & decrement() N d
& Tsupportsinerfacs() v

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> StakesAlmond.sol

INFO:Detectors:
StakesAlmond.set(EIP20,EIP20,uint256,uint256,uint8,uint8,uint8,uint256,uint256) (StakesAlmond.sol#562-) should emit an event
tor:

= Ittr i .C ytic/slither «i/Detector-Documentation#miss ing-events-arithmetic
INFD Detectors
Owner.constructor(255). (. C ro-check on

Owner . changeOwner(e ner (Stake sAlmond. lacks a zero-check on
{5takesal
https://g /Cry /slither/wiki/Detector-Documentation#missing-ze ress-validation
INFO: Detectors
Reentrancy in StakesAlmond.start{uint256) (StakesAlmond.sol#505-518):
External calls
- css»‘t.tl'el sfer r:r’lﬁr’s-..s»rw‘»‘l »SSItl is), value) (StakesAlmond.sol#

|[r en '_ z tlr’-stcr’|.
Itt|. /cry ; 1k1._|: tecte
INFO: Detectors
Reentrancy in StakesAlmond. {uint256) (StakesAlmond.sol#512-56
External calls:
- asset.transfer g.s5e s 2 d . (ization)) (StakesAlmond.sol#521
- asset.transfer I i
nt emitted af (s)
- StakeEnd(msg.se .sende 1] .amoun nalization,8,1i) (StakesAlmond.sol#526)
Reentrancy in StakesAl (ui {StakesAlmond. sol#5
External calls:
- asset.transfer (0 (),msg.se ,_interest] (StakesAlmond.sol#
- asset2.transfer ().,msg.ser r,_interest2) (StakesAlmo

eference /wiki/Detector-Documentation#reentrancy-v
INFO:Detectors:
Stake sﬁlr- nd.end{uint256) (StakesAlmond.sol#512-560) uses timestamp for comparisons

b .timestamp.sub(ar .) = maturity (StakesAlmonc :))
- il‘t-\ st = & 0 (= _1interest && =t. nce0f(getOwner()) == _interest (

- _1|ter:st_- : « asset2.allowance(getOwner(),a (this)) == _interest2 && asset2.balance0f({getOwner{)) == _intere
2 (StakesAlmo
Reference: https:/
INFO:Detectors:
StakesAlmond.end{uint256)
i 'ctl‘5d1r'|' sol#515)
: https
INFD Detectors
M {uint256,
{uint256,

R T erence: |
INFO:Detectors:
Pragma version™8.8.0 (StakesAlmond.sol#60) necessitates a version too recent to be trusted. Consider

slither/wiki/Detector-Documentation#incorrect-versions-of-solid ity

.transfer(address, L'LI 256) (StakesA d. 1 is not in mixedCase
.transfer(address, 4 = .s50l#402) is not in mixedCase

L= . 3) 1s not in mixedCase
TstakesAlmond. 3)i ot in mixedCase
Parameter Stake Sd]. 2 ains2 g ,ui ress (StakesA) is not in mixedCase
Parameter StakesAlmo = ains2(855, U1 _number (3 #585) 1is not in mixedCase
Function StakesAlm = (ess) cesAlmond : i t in mixedCase
Parameter StakesaAl . 3 gth() = A .) is not in mixedCase
riable Etak»:s:i\lr .' are ra (Stake . 3 is not in mixedCase
riable A 2 . ! is not in mixedCase
i f is not in mixedCase
-Documentation#conformance-to-solidity-naming

TIcIST»IléF"‘I»SS L.'th d
should be clared e/.t.|ral
) 'ZStak-:sAlr’-:r-:.
ress,uint256) (StakesAlmo
nal

= ess)

set(EIP20, int256,uin 6,uint8,ui ,uintg,uint256,uint256)

- 5 z . 20, uint256 L,'Ll‘t: i Lut._ ,uintg,uints, L'Ll‘t_._ ,uint256)
ledger_length(255) he d exte erna

- 3 A d. StakesAlmond.sol#6
Reference: https://github.c C ither/wiki/Detector-Documentatio #public-function-that-could-be-declared-externa
INFO:5lither: Stakes.\ﬂ.mond sol analyzed (6 contracts with 75 detectors), 64 result(s) found
INFO:Slither:Use http c C de or b integra

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

S!ithet_‘ Iog_ >> ERC_721Matcha.soI

INFO:Detectors:
ERC721MetadataMintable.mintWithTokenURI(address u1ht;“t,st|1ngl.tokanLRI (ERC721Matcha.sol#983) shadows

- ERC721Metadata. tokenURI{uint256) IERCaLlﬂatcha sol#953 SC; ITunctanl

- IERC721Metadata.tokenURI{uint256) (ERC721Matcha.sol#
ERC721Full.autoMint(string,address).tokenURI (ERC721Matcha.sol#1t "

- ERC721Metadata.tokenURI{uint256) (ERC721Matcha.sol#9] ITunctanl

- IERC721Metadata.tokenURI{uint256) (ERC721Matcha.sol#9 (function)
Reference: https://github. c:nfcwvtlcfsllthélf\lklftétéctar E3cuw*ntatlan#lDcdl—variable—shadowing
INFO:Detectors:
ERC721Matcha.updateAdmin{address,uint256,bool) {(ERC721Matcha.sol#1368-1373) should emit an event for:

- commissionRate = _commissionRate (ERC721Matcha.sol#1371)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic
INFO:Detectors:
ERC721Matcha.updateAdmin{address,uint256,bool)._admin (ERC721Matcha.sol#1368) lacks a zero-check on

admin = _admin (ERC721Matcha.sol#13

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Address.isContract(address) (ERC721Matcha.sol#254-270) uses assembly

- INLINE ASM (ERC721Matcha.sol#
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
Address.isContract{address) (ERC721Matcha.sol#254-270) 1is never used and should be removed
Address.toPayable({address) (ERC721Matcha.sol#2 282) is never used and should be removed
ERC165._registerInterface({bytes4) (ERC721Matcha.sol#361-364) is n - used and should be removed
ERC721._checkOnERC721Rece {address,address ,uint256,bytes) (ER 1Matcha.sol#618-636) is never used and should be removed
ERC721._1isApprovedOrOwner(address,uint256) (ERC721Matcha.sol#548-561) is never used and should be remove
ERC721Enumerable._addTokenToAllTokensEnumeration(uint256) (ERC721Matcha.sol#882-885) is n r used and should be removed
ERC721Enumerable._ addTokenToOwnerEnumeration{address,uint256) (ERC721Matcha.sol#873-876) 1is newer used and should be removed
ERC721Matcha.callOptionalReturn{IERC721,bytes) iERCTElMatcha.501#1346—13ﬁ=) is never used and should be removed
ERC721Mintable._setMintableOption(bool) (ERC721Matcha.sol#741-743) is never used and should be removed
SafeMath.add{uint256,uint256) (ERC721Matcha.sol#156-161) is er used and should be l
SafeMath.mod{uint256,uint256) (ERC721Matcha.sol#233-236) is never used and should be

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version™8.8.0 (ERC721Matcha.sol#3) necessitates a version too recent to be trusted. Consider deploying with 8.6.12/8.7.6
solc-8 @ is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in ERC721Matcha.calloptionalReturn{IERC721,bytes) (ERC721Matcha.sol#1346-1365

- (success,returndata) = address(token).call{data) {ERC721Matcha.sol#1358)
Reference: https://github.comscrytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Parameter ERC721Matcha.createAuction{uint256,uint256,address,uint256). closingTime (ERC721Matcha.sol#1237) is not in mixedCase
Parameter ERCa;lMatcha.C|natAHuctlon\u1nt;5t,u1nt -,address, nt2 _beneficiary (ERC721Matcha. sol#lL;an is not in mixedCase
Parameter ERC721Matcha.createAuction{uint256,uint y, addre int2 ePrice (ERC721Matcha.sol#1237) is not in mixedCase
Parameter ERC721Matcha.updateAdmin(address,uint256,bool)._admin IERCaAlHatcha sol#1368) is not in mixedCase
Parameter ERC721Matcha.updateAdmin(address,uint256,bool)._commissionRate {ERC721Matcha.sol#1268) 1is not in mixedCase
Parameter ERC721Matcha.updateAdmin(address,uint256,bool). yoneCanMint (ERC721Matcha.sol#1368) is not in mixedCase
Variable ERC721Matcha.contract_owner {ERC721Matcha.sol#1885) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
ERC721Matcha (ERC721Matcha.sol#10876-1376) does not implement functions:

- IERC721.safeTransferFrom{address,address,uint256,bytes) (ERC721Matcha.sol#97-1082)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unimplemented-functions
INFO:Detectors:
ERC165. INTERFACE_ID_ERC165 (ERC721Matcha.sol#329) is never used in ERC721Matcha (ERC721Matcha.sol#1l -1376
ERC721._INTERFACE_ID_ERC721 (ERC721Matcha.sol# i er used in ERC721Matcha (ERC721Matcha.sol#1076-1376)
ERC721Enumerable. INTERFACE_ID_ERC721_ENUMERABLE (ERC721Matcha.sol#885) is never used in ERC721Matcha (ERC721Matcha.sol#1876-13
ERC721Metadata. INTERFACE _ID ERC721 METADATA (ERC721Matcha.sol#926) is never used in ERC721Matcha (ERC721Matcha.sol#1876-1376)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-state-variables
INFO:Detectors:
ERC721Matcha.contract_owner (ERC721Matcha.sol#1085) should be constant
ERC721Metadata._name (ERC721Matcha.sol#911) should be constant
ERC721Metadata._symbol (ERC721Matcha.sol#914) should be constant

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-constant
INFO:Detectors:
safeTransferFrom{address,address,uint256) should be declared external:
- ERC721.safeT FahSTéIFIDW[ajjléSS,ajjléSS uint256) (ERC721Matcha.sol#522-
- IERC721.safeTransferFrom{address,address,uint256) (ERC721Matcha.sol#68-
setApprovalForAll{address,bool) should be declared externa
- ERC721.setApprovalForAll{address,beol) (ERC721Matcha.sol#481-48
- IERC721.setApprovalForAll{address,bool) {ERC721Matcha.sol#90)
onERC721Received(address,address ,uint256 ,bytes) should be declared externa
- IERC721Receiver. DhERCf‘lRQCQlUQj'ajleSS,ajjIQSS uint256,bytes) (ERC721Matcha.sol#125-
addMinter(address) should be declared external:
- MinterRole.addMinter(address) (ERC721Matcha.sol#716-712)
renounceMinter() should be declared external:
- MinterRole.renounceMinter() (ERC721Matcha.sol#714-716)
mint{address,uint256) should be declared external:
= ERC»;lthtable mint{address,uint256) (ERC721Matcha.sol#751-758)
canIMint{) should be declared external:
- ERC721Mintable.canIMint() (ERC721Matcha.sol#760-762)
token0fownerByIndex{address,uint256) should be declared external:
- ERC721Enumerable.token0fOwnerByIndex(address,uint256) (ERC721Matcha.sol#818-821)
- IERC721Enumerable.tokenofownerByIndex(address,uint256) (ERC721Matcha.sol#776)
tokenByIndex(uint256) should be declared external:
- ERC721Enumerable.tokenByIndex{uint256) (ERC721Matcha.sol#337-8
- IERC721Enumerable.tokenByIndex{uint256) (ERC721Matcha.sol#778)
mintWithTokenURI(address,uint256,string) should be declared external:
- ERCa;lHAtajatanlntabla mintWithTokenURI{ address,uint256,string) (ERC721Matcha.sol#9
exists{uint256) should be declared external:
- ERC721Full.exists{uint256) (ERC721Matcha.sol#999-100
tokensOfOwner{address) should be declared externa
- ERC721Full. tokensOfowner({address) {ERC721Matcha.sol#1683-16065)
setTokenURI{uint256,string) should be declared external:
- ERC721Full.setTokenURI{uint256,string) (ERC721Matcha.sol#1007-1009)
autoMint({string,address) should be declared externa
- ERC721Full.autoMint{string,address) (ERC721Matcha.sol#1016-10823)

840)

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

n-
) found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

StakesAlmond.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in StakesAlmond.start(uint256): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: b0b:4:

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 555:39:

Gas & Economy

Gas costs:

Gas requirement of function EIP20.name is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 385:4:

Gas costs:

Gas requirement of function StakesAlmond.get_gains?2 is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 585:4:

Miscellaneous

Constant/View/Pure functions:

SafeMath.sub{uint256,uint256) : Is constant but potentially should not be. Note: Modifiers are
currently not considered by this static analysis.

more

Pos: 102:4:

Constant/View/Pure functions:

StakesAlmond.get_gains2(address,uint256) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 585:4:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

StakesAlmond.{contract EIP20,contract
EIP20,address,uint8,uint8,uint256,uint8,uint256,uint256,uint256) : Variables have very similar
names "_owner" and "_lower". Note: Modifiers are currently not considered by this static analysis.
Pos: b02:23:

Similar variable names:

StakesAlmond.({contract EIP20,contract
EIP20,address,uint8,uint8,uint256,uint8,uint256,uint256,uint256) : Variables have very similar

names "_rate" and "_rate2". Note: Modifiers are currently not considered by this static analysis.
Pos: 498:24:

No return:

EIP20Interface.allowance(address,address): Defines a return type but never explicitly returns a
value.
Pos: 363:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in

your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: b06:8:

ERC721Matcha.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in ERCY21Matcha.buy({uint256): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.

more

Pos: 1376:4:

Block timestamp:

Use of "now": "now" does not mean current time. "now" is an alias for "block timestamp".
"block.timestamp” can be influenced by miners to a certain degree, be careful.

more

Pos: 1472:12:

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
wvalue is not handled properly. Please use Direct Calls via specifying the called contract's interface.
more

Pos: 1570:32:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function ERC721.balanceOf is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 488:4:

Gas costs:

Gas requirement of function ERC721Matcha.withdraw is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your

functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 1522:4:

This on local calls:

Use of "this" for local functions: Never use "this" to call functions in the same contract, it only
consumes more gas than normal local calls.

more

Pos: 1581:60:

Miscellaneous

Constant/View/Pure functions:

ERC721._isApprovedOrOwner{address,uint256) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 658:4:

Similar variable names:

ERC721Matcha.auctionFinalize(uint256) : Variables have very similar names "success" and

"success2". Note: Modifiers are currently not considered by this static analysis.
Pos: 1571:20:

No return:

ERC7Y21Matcha.withdraw(uint256): Defines a return type but never explicitly returns a value.
Pos: 1522:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
yvour code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 1464:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

StakesAlmond.sol

StakesAlmond.sol:60:1: Error: Compiler version 70.8.0 does not
satisfy the r semver requirement
StakesAlmond.so0l:237:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.so0l:293:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.s0l1:389:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.so0l:411:9: Error: Variable name must be in mixedCase
StakesAlmond.so0l:472:18: Error: Variable name must be in mixedCase
StakesAlmond.so0l:473:18: Error: Variable name must be in mixedCase
StakesAlmond.so0l:476:20: Error: Variable name must be in mixedCase
StakesAlmond.s0l:490:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.so0l:491:23: Error: Variable name must be in mixedCase
StakesAlmond.so0l:508:40: Error: Avoid to make time-based decisions in
your business logic
StakesAlmond.so0l:518:12: Error: Avoid to make time-based decisions in
your business logic
StakesAlmond.so0l:523:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:524:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.so0l:524:40: Error: Avoid to make time-based decisions in
your business logic
StakesAlmond.sol:525:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:553:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:554:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.so0l:555:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.so0l:555:40: Error: Avoid to make time-based decisions in
your business logic
StakesAlmond.sol:556:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
StakesAlmond.sol:562:32: Error: Variable name must be in mixedCase
StakesAlmond.sol:576:5: Error: Function name must be in mixedCase
StakesAlmond.sol:576:42: Error: Variable name must be in mixedCase
StakesAlmond.sol:577:9: Error: Variable name must be in mixedCase
StakesAlmond.sol:577:35: Error: Avoid to make time-based decisions
your business logic
.s01:578:9: Error: Variable name must be in mixedCase
.s01:585:5: Error: Function name must be in mixedCase
StakesAlmond.so0l:585:43: Error: Variable name must be in mixedCase
StakesAlmond.so0l:586:9: Error: Variable name must be in mixedCase
StakesAlmond.so0l:586:35: Error: Avoid to make time-based decisions in
your business logic
StakesAlmond.so0l:587:9: Error: Variable name must be in mixedCase

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

StakesAlmond.so0l:590:9: Error: Variable name must be in mixedCase
StakesAlmond.sol:600:5: Error: Function name must be in mixedCase

ERC721Matcha.sol

ERC721Matcha.sol:63:1: Error: Compiler version 70.5.7 does not
satisfy the r semver requirement
ERC721Matcha.so0l:1159:5: Error: Explicitly mark visibility of state
ERC721Matcha.s0l:1258:5: Error: Explicitly mark visibility of state
ERC721Matcha.so0l:1260:20: Error: Variable name must be in mixedCase
RC721Matcha.so0l:1263:5: Error: Explicitly mark visibility of state
ERC721Matcha. :1397:28: Error: Avoid to use ".call.value() ()"
ERC721Matcha. :1397: : Error: Avoid using low level calls.
ERC721Matcha. :1401): Error: Avoid to use ".call.value() ()"
ERC721Matcha. :1401:29: Error: Avoid using low level calls.
RC721Matcha. :1439:13: Error: Avoid to make time-based decisions
in your busin logic
ERC721Matcha :1472:13: Error: Avoid to make time-based decisions
in your bukln logic
ERC721Matcha. :1488: 2: Error: Avoid to use ".call.value() ()"
ERC721Matcha. :1488:32: ror: Avoid using low level calls.
ERC721Matcha. :1508:21: Error: Avoid to make time-based decisions
in your business logic
RC721Matcha.so0l:1528 2 ~ror: Avoid to use ".call.value() ()"
ERC721Matcha.sol:1528:32: Error: Avoid using low level calls.
ERC721Matcha.so0l:1539:13: Error: Avoid to make time-based decisions
in your business logiF
ERC721Matcha.sol: : Error: Avoid to use ".call.value() ()"
ERC721Matcha.sol: EJ;:~’: Error: Avoid using low level calls.
FERC721Matcha.sol: :33: Error: Avoild to use ".call.value() ()"
ERC721Matcha.sol: : : Error: Avoid using low level calls.

(/) 0] o) 0] U) n n 0 m
O O mnmw O n OO O O O
e e B e B i i = B S

(n U)
@)

0}

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

