
Project: Versa Protocol
Website: https://versa.finance
Platform: Astar Network
Language: Solidity
Date: April 25th, 2022

https://versa.finance

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 18

Audit Findings …………………………………………………………………………………… 19

Conclusion ………………………………………………………………………………………. 25

Our Methodology ………………………………………………………………………………... 26

Disclaimers ………………………………………………………………………………………. 28

Appendix

● Code Flow Diagram ……………………………………………………………………... 29

● Slither Results Log ………………………………………………………………………. 37

● Solidity static analysis ….……………………………………………………………….. 45

● Solhint Linter …………………………………………………………………….……….. 56

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Versa team to perform the Security audit of the Versa
Protocol smart contracts code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on April 25th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Versa Finance is a UX-oriented family of dApps on the Astar Network. This audit project

consists of automatic market maker (AMM) decentralized exchange smart contracts.

Audit scope

Name Code Review and Security Analysis Report for
Versa Finance Protocol Smart Contracts

Platform Astar / Solidity

File 1 MasterChef.sol

File 1 Github Commit 41f5710dbc4a05a5fb6eaf7ea4a723fca2682377

File 2 SyrupBar.sol

File 2 Github Commit ccb074dca3aa40b0a0379115bbde37aa0df6886d

File 3 TokenTimelock.sol

File 3 Github Commit 9ed0ef04f55f8f7544344b0c9de50ef823e9bc98

File 4 Versa.sol

File 4 Github Commit 582782ed9740c8e3a42c8c87b6514d46760d439b

File 5 VersaRouter.sol

File 5 Github Commit 51ebcbe2ea96eb9abd8086d4b8551e2f25731eb3

File 6 VersaFactory.sol

File 6 Github Commit 28f2831ee6e53384838c9a5d126bb0f402fc36cb

https://github.com/versa-finance-dev/versa-contracts/blob/main/MasterChef.sol
https://github.com/versa-finance-dev/versa-contracts/blob/main/SyrupBar.sol
https://github.com/versa-finance-dev/versa-contracts/blob/main/TokenTimelock.sol
https://github.com/versa-finance-dev/versa-contracts/blob/main/Versa.sol
https://github.com/versa-finance-dev/versa-contracts/blob/main/VersaRouter.sol
https://github.com/versa-finance-dev/versa-contracts/blob/main/VersaFactory.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 MasterChef.sol
● MasterChef is the master of Versa.

● Bonus Multiplier: 1

● Total Alloc Point: 1000

● Dev commission: 10%

YES, This is valid.

File 2 SyrupBar.sol
● Name: SyrupBar Token

● Symbol: SYRUP

● Decimals: 18

● Minting by masterChef contract

YES, This is valid.

File 3 TokenTimelock.sol
● Lock time can be set at the time of contract

deployment

YES, This is valid.

File 4 Versa.sol
● Name: Versa

● Symbol: VERSA

● Decimals: 18

● Dev Fund Pool Allocation: 500000 Tokens

● Vesting Duration: 300 Days

● Minting should be done by MasterChef contract

YES, This is valid.

File 5 VersaRouter.sol
● Performs trading/swapping of tokens

● Performs add/remove liquidity

YES, This is valid.

File 6 VersaFactory.sol
● Creates token pairs

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Nearly Secure”. Also, these contracts do contain owner control, which does not make
them fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 0 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 6 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Versa Finance Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Versa Finance Protocol.

The Versa Finance team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Versa Finance Protocol smart contract code in the form of github links.

The commits of that code are mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://versa.finance which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://versa.finance

AS-IS overview

MasterChef.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 updateMultiplier write access only Owner No Issue
8 poolLength external Passed No Issue
9 add write Input validation

missing
LP Token must
not be added

twice
10 set write access only Owner No Issue
11 updateStakingPool internal Infinite loop

possibility
Array length must

be limited
12 setMigrator write access only Owner No Issue
13 migrate write This should be

removed, as it can
be potential rugpull

Acknowledged by
the dev team that
It will not be used

by the owner
14 getMultiplier read Passed No Issue
15 pendingVersa external Passed No Issue
16 massUpdatePools write Infinite loop

possibility
Array length must

be limited
17 updatePool write Passed No Issue
18 deposit write Passed No Issue
19 withdraw write Passed No Issue
20 enterStaking write Passed No Issue
21 leaveStaking write Passed No Issue
22 emergencyWithdraw write Passed No Issue
23 safeVersaTransfer internal Passed No Issue
24 dev write Passed No Issue

SyrupBar.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue
4 decimals read Passed No Issue

5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 mint write access only Owner No Issue
21 burn write access only Owner No Issue
22 safeVersaTransfer write access only Owner No Issue
23 delegates external Passed No Issue
24 delegate external Passed No Issue
25 delegateBySig external Passed No Issue
26 getCurrentVotes external Passed No Issue
27 getPriorVotes external Passed No Issue
28 _delegate internal Passed No Issue
29 _moveDelegates internal Passed No Issue
30 _writeCheckpoint internal Passed No Issue
31 safe32 internal Passed No Issue
32 getChainId internal Passed No Issue

TokenTimelock.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 token read Passed No Issue
3 beneficiary read Passed No Issue
4 releaseTime read Passed No Issue
5 release write Passed No Issue

Versa.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name read Passed No Issue

4 decimals read Passed No Issue
5 symbol read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 addDevAddr write access only Owner No Issue
21 delegate external Passed No Issue
22 delegates external Passed No Issue
23 delegateBySig external Passed No Issue
24 getCurrentVotes external Passed No Issue
25 getPriorVotes external Passed No Issue
26 _delegate internal Passed No Issue
27 _moveDelegates internal Passed No Issue
28 _writeCheckpoint internal Passed No Issue
29 safe32 internal Passed No Issue
30 unclaimedDevFund read Passed No Issue
31 claimRewards external Passed No Issue
32 getChainId internal Passed No Issue

VersaRouter.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 ensure modifier Passed No Issue
3 receive external Passed No Issue
4 _addLiquidity internal Passed No Issue
5 addLiquidity external Passed No Issue
6 addLiquidityETH external Passed No Issue
7 removeLiquidity write Passed No Issue
8 removeLiquidityETH write Passed No Issue
9 removeLiquidityWithPerm

it
external Passed No Issue

10 removeLiquidityETHWith
Permit

external Passed No Issue

11 removeLiquidityETHSupp
ortingFeeOnTransferToke
ns

write Passed No Issue

12 removeLiquidityETHWith
PermitSupportingFeeOnT
ransferTokens

write Passed No Issue

13 _swap internal Infinite loop
possibility

Keep path limited

14 swapExactTokensForTok
ens

external Passed No Issue

15 swapTokensForExactTok
ens

external Passed No Issue

16 swapExactETHForToken
s

external Passed No Issue

17 swapTokensForExactET
H

external Passed No Issue

18 swapExactTokensForET
H

external Passed No Issue

19 swapETHForExactToken
s

external Passed No Issue

20 _swapSupportingFeeOnT
ransferTokens

internal Infinite loop
possibility

Keep path limited

21 swapExactTokensForTok
ensSupportingFeeOnTra
nsferTokens

external Passed No Issue

22 swapExactETHForToken
sSupportingFeeOnTransf
erTokens

external Passed No Issue

23 swapExactTokensForET
HSupportingFeeOnTransf
erTokens

external Passed No Issue

24 quote write Passed No Issue
25 getAmountOut write Passed No Issue
26 getAmountIn write Passed No Issue
27 getAmountsOut read Passed No Issue
28 getAmountsIn read Passed No Issue

VersaFactory.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 allPairsLength external Passed No Issue
3 createPair external Passed No Issue
4 setFeeTo external Passed No Issue
5 setFeeToSetter external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) The migrator code is present - MasterChef.sol

This code is used to migrate the LP tokens to any other contract. This creates the scenario

of potential rugpull.

Resolution: we advise removing this if there is no need for migrating the LP tokens.

Status: We got confirmation from the Versa team that this functionality will never be used.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Input validation missing - MasterChef.sol

As mentioned in the comment, the token must never be added twice. So, there must be a

condition to prevent that from happening by mistake.

Resolution: One condition to prevent any duplicate input will fix this.

Status: we got confirmation from the Versa team as this will be taken extra care as this is

the owner function.

(2) Infinite loops possibility at multiple places:

As seen in the AS-IS section, there are several places in the smart contracts, where

array.length is used directly in the loops. It is recommended to put some kind of limits, so it

does not go wild and create any scenario where it can hit the block gas limit.

Resolution: Limiting the array length is recommended.

Status: We got confirmation from the Versa team that the array will be provided as limited

length. And this will be taken care of from the client side

(3) Missing event logs in VersaFactory.sol

It is best practice to fire an event when a significant state change is happening. It helps

clients interact with the blockchain. We suggest to add events in following functions:

● setFeeTo

● setFeeToSetter

Resolution: Add appropriate events in above functions.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Use latest solidity version

Consider using the latest solidity version while contract deployment to prevent any

compiler version level bugs. There are many features introduced and many security bugs

are fixed so it is a good practice to use the latest solidity version.

Resolution: Please use the latest solidity version.

Status: Acknowledged

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● add: MasterChef owner can add a new lp to the pool.

● updateMultiplier: MasterChef owner can update multiplier number.

● set: MasterChef owner can update the given pool's VERSA allocation point.

● setMigrator: MasterChef owner can set the migrator contract.

● mint: SyrupBar owner can create `_amount` token to `_to` by MasterChef owner.

● burn: SyrupBar owners can burn an amount from the address.

● safeVersaTransfer: SyrupBar owner can safe versa transfer function, just in case if

rounding error causes pool to not have enough VERSAs.

● mint: Versa owner can create `_amount` token to `_to` by MasterChef owner.

● addDevAddr: Versa owner can set dev address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts, and

we suggested resolving them using any alternative solutions. So, smart contracts can
be workable and secure.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Nearly Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Versa Finance Protocol

MasterChef Diagram

SyrupBar Diagram

TokenTimelock Diagram

Versa Diagram

VersaRouter Diagram

VersaFactory Diagram

Slither Results Log

Slither log >> MasterChef.sol

Slither log >> SyrupBar.sol

Slither log >> Versa.sol

Slither log >> VersaRouter.sol

Slither log >> VersaFactory.sol

Slither log >> TokenTimelock.sol

Solidity Static Analysis

MasterChef.sol

SyrupBar.sol

TokenTimelock.sol

Versa.sol

VersaRouter.sol

VersaFactory.sol

Solhint Linter

MasterChef.sol

MasterChef.sol:5:1: Error: Compiler version 0.6.12 does not satisfy
the r semver requirement
MasterChef.sol:35:25: Error: Use double quotes for string literals
MasterChef.sol:51:26: Error: Use double quotes for string literals
MasterChef.sol:94:29: Error: Use double quotes for string literals
MasterChef.sol:112:26: Error: Use double quotes for string literals
MasterChef.sol:152:26: Error: Use double quotes for string literals
MasterChef.sol:343:50: Error: Use double quotes for string literals
MasterChef.sol:346:58: Error: Use double quotes for string literals
MasterChef.sol:347:26: Error: Use double quotes for string literals
MasterChef.sol:369:43: Error: Use double quotes for string literals
MasterChef.sol:402:59: Error: Use double quotes for string literals
MasterChef.sol:417:49: Error: Use double quotes for string literals
MasterChef.sol:427:37: Error: Use double quotes for string literals
MasterChef.sol:499:13: Error: Use double quotes for string literals
MasterChef.sol:520:13: Error: Use double quotes for string literals
MasterChef.sol:536:69: Error: Use double quotes for string literals
MasterChef.sol:540:53: Error: Use double quotes for string literals
MasterChef.sol:559:28: Error: Code contains empty blocks
MasterChef.sol:609:41: Error: Use double quotes for string literals
MasterChef.sol:637:41: Error: Use double quotes for string literals
MasterChef.sol:792:59: Error: Use double quotes for string literals
MasterChef.sol:832:69: Error: Use double quotes for string literals
MasterChef.sol:869:39: Error: Use double quotes for string literals
MasterChef.sol:870:42: Error: Use double quotes for string literals
MasterChef.sol:872:59: Error: Use double quotes for string literals
MasterChef.sol:887:40: Error: Use double quotes for string literals
MasterChef.sol:906:40: Error: Use double quotes for string literals
MasterChef.sol:908:61: Error: Use double quotes for string literals
MasterChef.sol:931:38: Error: Use double quotes for string literals
MasterChef.sol:932:40: Error: Use double quotes for string literals
MasterChef.sol:949:60: Error: Use double quotes for string literals
MasterChef.sol:955:30: Error: Use double quotes for string literals
MasterChef.sol:955:38: Error: Use double quotes for string literals
MasterChef.sol:1066:17: Error: Avoid to make time-based decisions in
your business logic
MasterChef.sol:1188:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
MasterChef.sol:1194:28: Error: Use double quotes for string literals
MasterChef.sol:1194:46: Error: Use double quotes for string literals
MasterChef.sol:1330:17: Error: Avoid to make time-based decisions in
your business logic
MasterChef.sol:1452:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
MasterChef.sol:1516:20: Error: Variable name must be in mixedCase
MasterChef.sol:1676:29: Error: Use double quotes for string literals
MasterChef.sol:1698:29: Error: Use double quotes for string literals

SyrupBar.sol

SyrupBar.sol:777:59: Error: Use double quotes for string literals
SyrupBar.sol:792:40: Error: Use double quotes for string literals
SyrupBar.sol:811:40: Error: Use double quotes for string literals
SyrupBar.sol:813:61: Error: Use double quotes for string literals
SyrupBar.sol:836:38: Error: Use double quotes for string literals
SyrupBar.sol:837:40: Error: Use double quotes for string literals
SyrupBar.sol:854:60: Error: Use double quotes for string literals
SyrupBar.sol:860:30: Error: Use double quotes for string literals
SyrupBar.sol:860:38: Error: Use double quotes for string literals
SyrupBar.sol:971:17: Error: Avoid to make time-based decisions in
your business logic
SyrupBar.sol:1093:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
SyrupBar.sol:1099:28: Error: Use double quotes for string literals
SyrupBar.sol:1099:46: Error: Use double quotes for string literals
SyrupBar.sol:1235:17: Error: Avoid to make time-based decisions in
your business logic
SyrupBar.sol:1357:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

TokenTimelock.sol

TokenTimelock.sol:369:18: Error: Parse error: missing ';' at '{'

Versa.sol

Versa.sol:5:1: Error: Compiler version 0.6.12 does not satisfy the r
semver requirement
Versa.sol:21:28: Error: Code contains empty blocks
Versa.sol:1074:17: Error: Avoid to make time-based decisions in your
business logic
Versa.sol:1212:24: Error: Avoid to make time-based decisions in your
business logic
Versa.sol:1228:34: Error: Avoid to make time-based decisions in your
business logic
Versa.sol:1234:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

VersaRouter.sol

VersaRouter.sol:1:1: Error: Compiler version =0.6.12 does not satisfy
the r semver requirement
VersaRouter.sol:24:45: Error: Avoid using low level calls.
VersaRouter.sol:25:76: Error: Use double quotes for string literals
VersaRouter.sol:30:45: Error: Avoid using low level calls.

VersaRouter.sol:31:76: Error: Use double quotes for string literals
VersaRouter.sol:36:45: Error: Avoid using low level calls.

VersaFactory.sol

VersaFactory.sol:2:1: Error: Compiler version =0.6.12 does not
satisfy the r semver requirement
VersaFactory.sol:36:5: Error: Function name must be in mixedCase
VersaFactory.sol:37:5: Error: Function name must be in mixedCase
VersaFactory.sol:54:5: Error: Function name must be in mixedCase
VersaFactory.sol:87:5: Error: Function name must be in mixedCase
VersaFactory.sol:88:5: Error: Function name must be in mixedCase
VersaFactory.sol:97:35: Error: Use double quotes for string literals
VersaFactory.sol:101:35: Error: Use double quotes for string literals
VersaFactory.sol:105:49: Error: Use double quotes for string literals
VersaFactory.sol:112:37: Error: Constant name must be in capitalized
SNAKE_CASE
VersaFactory.sol:112:44: Error: Use double quotes for string literals
VersaFactory.sol:113:37: Error: Constant name must be in capitalized
SNAKE_CASE
VersaFactory.sol:113:46: Error: Use double quotes for string literals
VersaFactory.sol:114:36: Error: Constant name must be in capitalized
SNAKE_CASE
VersaFactory.sol:119:29: Error: Variable name must be in mixedCase
VersaFactory.sol:132:27: Error: Use double quotes for string literals
VersaFactory.sol:134:33: Error: Use double quotes for string literals
VersaFactory.sol:183:29: Error: Avoid to make time-based decisions in
your business logic
VersaFactory.sol:183:46: Error: Use double quotes for string literals
VersaFactory.sol:222:5: Error: Explicitly mark visibility of state
VersaFactory.sol:260:63: Error: Use double quotes for string literals
VersaFactory.sol:276:32: Error: Use double quotes for string literals
VersaFactory.sol:289:45: Error: Avoid using low level calls.
VersaFactory.sol:319:40: Error: Avoid to make time-based decisions in
your business logic
VersaFactory.sol:426:104: Error: Use double quotes for string
literals
VersaFactory.sol:467:35: Error: Use double quotes for string literals
VersaFactory.sol:473:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
VersaFactory.sol:484:44: Error: Use double quotes for string literals
VersaFactory.sol:489:44: Error: Use double quotes for string literals

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

