@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: VatCap Coin

Website: https://vatcapcoin.com
Platform: Binance Smart Chain
Language: Solidity

Date: May 4th, 2022

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 16
(@ 0] 1Y/ =1 1 T To [o] 0T) 17
DISCIAIMEIS ... e 19
Appendix
o Code FIoW Diagramououoiiii s 20
o Shther RESUIS LOGuiiiiii e 21
e Solidity staticanalysis ... 23
® SOININt LiNtEr oo 25

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the VatCap Coin team to perform the Security audit of
the VatCap Coin smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 4th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The VatCap Coin contract is a BEP20 standard smart contract with dividend distribution. It

has functions like approveMax, setMaxWalletPercent, setTxLimit, basicTransfer, etc.

Audit scope
Name Code Review and Security Analysis Report for
VatCap Coin cSmart Contract
Platform BSC / Solidity
File VatCapCoin.sol
File MD5 Hash 34FC240D92A9BOAACAC9AB16799538D5
Online Code Link 0x9a1B64E3536E8C210b6485CDDf11344130aecFID
Audit Date May 4th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x9a1B64E3536E8C210b6485CDDf11344130aecF9D#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Tokenomics:

Name: VatCap Coin
Symbol: VCC

Decimals: 18

Total Supply: 5 Billion
Liquidity Fee: 2%
Reflection Fee: 3%
Marketing Fee: 2%
Ecosystem Fee: 1%

Burn Fee: 1%

Fee Denominator: 100
Sell Multiplier: 100

Target Liquidity: 85

Target Liquidity Denominator: 100
Distributor Gas: 0.5 Million

Cooldown Timer Interval: 1 minute

YES, This is valid.

Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet

securely.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in VatCap coin are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the VatCap Coin protocol.

The VatCap Coin team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a VatCap Coin smart contract code in the form of a BSCScan Web

Link.The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | onlyOwner modifier Passed No Issue
3 | authorized modifier Passed No Issue
4 | authorize write access only Owner No Issue
5 | unauthorize write Passed No Issue
6 | isOwner read Passed No Issue
7 | isAuthorized read Passed No Issue
8 | transferOwnership write access only Owner No Issue
9 [receive external Passed No Issue
10 | totalSupply external Passed No Issue
11 | decimals external Passed No Issue
12 | symbol external Passed No Issue
13 | name external Passed No Issue
14 | getOwner external Passed No Issue
15 | balanceOf read Passed No Issue
16 | allowance external Passed No Issue
17 | approve write Passed No Issue
18 | approveMax external Passed No Issue
19 | transfer external Passed No Issue
20 | transferFrom external Passed No Issue
21 | setMaxWalletPercent base1000 | external [access only Owner No Issue
22 | setMaxTxPercent base1000 external | access only Owner No Issue
23 | setTxLimit external access by No Issue
authorized
24 | transferFrom internal Passed No Issue
25 | basicTransfer internal Passed No Issue
26 | checkTxLimit internal Passed No Issue
27 | shouldTakeFee internal Passed No Issue
28 | takeFee internal Passed No Issue
29 | shouldSwapBack internal Passed No Issue
30 | clearStuckBalance external access by No Issue
authorized
31 | clearStuckBalance_sender external access by No Issue
authorized
32 | set sell multiplier external | access only Owner No Issue
33 | tradingStatus write access only Owner No Issue
34 | cooldownEnabled write access only Owner No Issue
35 | swapBack internal Passed No Issue
36 | setlsDividendExempt external
37 | enable blacklist write access only Owner No Issue
38 | manage blacklist write Unbounded Loop [No Big Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

39 | setlsFeeExempt external access by No Issue
authorized
40 | setlsTxLimitExempt external access by No Issue
authorized
41 | setlsTimelockExempt external access by No Issue
authorized
42 | setFees external access by No Issue
authorized
43 | setFeeReceivers external access by No Issue
authorized
44 | setSwapBackSettings external access by No Issue
authorized
45 | setTargetLiquidity external access by No Issue
authorized
46 | setDistributionCriteria external access by No Issue
authorized
47 | setDistributorSettings external Missing required Refer audit
error message findings
48 | getCirculatingSupply read Passed No Issue
49 | getLiquidityBacking read Passed No Issue
50 | isOverLiquified read Passed No Issue
51 | multiTransfer external | access only Owner No Issue
52 | multiTransfer fixed external | access only Owner No Issue
53 | initialization modifier Missing required Refer audit
error message findings
54 | onlyToken modifier Missing required Refer audit
error message findings
55 | setShare external | access only Token No Issue
56 | setDistributionCriteria external | access only Token No Issue
57 | deposit external | access only Token No Issue
58 | process external | access only Token No Issue
59 | shouldDistribute internal Passed No Issue
60 [distributeDividend internal Passed No Issue
61 | claimDividend external Passed No Issue
62 [getUnpaidEarnings read Passed No Issue
63 | getCumulativeDividends internal Passed No Issue
64 | addShareholder internal Passed No Issue
65 | removeShareholder internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.
Low

(1) Missing events:

It is recommended to emit appropriate events in the functions where significant state is
being changed. This helps the Ul elements to interact with the blockchain. We suggest

adding events in the following functions:

e authorize o setlsFeeExempt

e unauthorize o setlsTxLimitExempt

o setMaxWalletPercent_base1000 o setlsTimelockExempt
e setMaxTxPercent_base1000 e setFees

e set_sell_multiplier e setFeeReceivers

e tradingStatus e setSwapBackSettings
e cooldownEnabled e setTargetLiquidity

e enable_blacklist e setDistributionCriteria
e setTxLimit e setDistributorSettings
e clearStuckBalance e setlsDividendExempt
e clearStuckBalance_sender

Status: Open

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Missing required error message:

setDistributorSettings(1as authorized {
(gas < 750000);

distributorGas = gas;

setIsDividendExempt (holder, exempt) authorized {
(holder != () && holder != pair);
isDividendExempt[holder] = exempt;

if{exempt){

There are many places where there are no error messages in the required condition. It is
best practice to put relevant error messages which will help identify the failure of the

transactions.
Resolution: We suggest setting relevant error messages.

Status: Open

(2) Unbounded loop

manage_blacklist([] addresses, status) onlyOwner {
(i; i < addresses.length; ++i) {

isBlacklisted[addresses[i]] = status;

If the owner inputs many addresses, then it may hit the block’s gas limit, and cause the
transaction to fail. Solidity is a very resource constrained language and does not have as

extensive resource allocation as other programming languages.

Resolution: We suggest setting a limit on the number of wallets used, or the owner can

acknowledge as being careful and only use a limited number of wallets.

Status: Open

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

o setMaxWalletPercent_base1000: Owner can set max wallet percent base value.

e setMaxTxPercent_base1000: Owner can set max transaction percent base value.

e setTxLimit: Authorized person can set transaction limit.

e clearStuckBalance: Authorized person can clear stuck balance.

e clearStuckBalance sender: Authorized person can clear stuck balance.

e set sell multiplier: Owner can set sell multiplier value.

e tradingStatus: Owner can set switch Trading status.

e cooldownEnabled: Owner can enable cooldown between trades.

e setlsDividendExempt: Authorized person can set distributor shares.

e enable_blacklist: Owner can enable blacklist status.

e manage_blacklist: Owner can manage blacklist.

e setlsFeeExempt: Authorized can set fee exempt address and status.

e setlsTxLimitExempt: Authorized can set transaction limit exempt.

e setlsTimelockExempt: Authorized can set time lock exempt.

e setFees: Authorized can set fees like: liquidity Fee, reflection Fee, marketing Fee,
ecosystem fee, burn Fee, fee Denominator.

e setFeeReceivers: Authorized can set receivers fees like: autoLiquidity Receiver,
marketingFee Receiver, ecosystem fee Receiver, burn Fee Receiver.

e setSwapBackSettings: Authorized can set swap back settings amount.

e setTargetLiquidity: Authorized can set target liquidity value.

e setDistributionCriteria: Authorized can set distribution criteria.

e setDistributorSettings: Authorized can set distribution settings.

e multiTransfer: Owner can set muti transfer token.

e multiTransfer_fixed: Owner can set muti transfer fixed token.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We have not observed any major issues. So, the smart contract is good

to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

(©) owidzndDistributor

IDividendDistributor
@vSafeMath for wint258

< address _token

< IBEP20 RWRD

< address WBNB

> IDEXRouter router

> address shareholders

==Uint256 shareholderindexes
uint256 shareholderClaims
Share shares

© wint258 totalShares

© uint256 totalDividends

© uint256 totalDistributed

© uirt256 dividendsPerShare

© uint256 dividendsPerShareAccuracyFactor
@ uint256 minPeriod

© uint256 minDistribution

© uint258 currentindex

< ool inftialized

@ _ constructer__()

@ setDistributionCriteria()
@ setShare()

@ édeposit()

@ process()

< O shouldDistribute()
& distributeDividend()

@ claimDividend()

@ QgetUnpaidEarnings()
< QgetCumulativeDividends()
< addShareholder()

< removeShareholder()

Code Flow Diagram - VatCap Coin

@ vatcapGoin

IBEPZ20
Auth

WSafeMath for wint256

< address WEBNB

< address DEAD

< address 7ERD

< string _name

< string _symbal

& uint8 _decimals

< Lint256 _totalSupply

© uint258 _maxTxAmount

O uirt256 _max\WalletToken
int256 _balances

© bool blacklistMode

bool isTimelockExempt
ool isDividendExempt
O uint256 liguidityFee

© uint256 reflectionFee
[] 256 marketingFee
o 256 ecosystemfee

@ uint256 burnFee

O uirt256 totalFee

@ uint256 feeDenominator

@ uirt256 sellMuttiplier

O address autoLiguidityReceiver
O address marketingFeeReceiver
O address ecosystemfeeReceiver
© address burnFeeReceiver

< Lint256 targetLiguidity

< Lint256 targetLiguidityDenominator
© IDEXRouter router

© address pair

@ bool tradingOpen

© DividendDistributor distributor
© Lint256 distributorGas

< bool buyCooldownEnabled

© uintd cooldownTimerinterval

0O address=>uint cooldownTimer
@ bool swapEnabled

@ uint256 swapThreshold

< bool inSwap

mapping address==uirt256 _allowances

(@) iexrouter

(@) ipexFactory

@ createPair()

@ &__constructor__()
@ QtetalSupply()

@ Qeecimals()

@ Qsymbal()

@ Qname()

@ QgetOwner()

@ QbalanceOf()

@ Qualowance()

@ approve()

@ approveMax()

@ transfer()

@ transferFrom()

© setMaxWalletPercent_base1000()
@ setMaxTxPercent_base1000()
@ setTxLimit()

< _transferFrom()

< _basicTransfer()

< O,checkTxLimit()

“ QshouldTakeFee()

< takeFee()

< QshouldSwapBack()
@ clearStuckBalance()

@ clearStuckBalance_sender()
® set_sell_multiplier()

® tradingStatus()

@ cooldownEnabled()

< swapBack()
setlsDividendExempt()
enable_blacklist()
manage_blacklist()
setlsFeeExempt()
setlsTxLimitExempt()
setlsTimelockExempt()
setFees()
setFesReceivers()
setSwapBackSettings()
setTargetLiquidity()
setDistributionCriterial)
setDistributorSettings()
QgetCirculatingSupply()
A getLiquidityBacking()
QisOverLiguified()
multiTransfer()
muttiTransfer_fixed()

Jeocoecooooooo0oo0O0O®

",for uint256 ,"for uint256

7 © . Auth

(@) r8eP20

(@ ipividenapistributor (@) satenatn © address owner
* address==hool authorizations
@ setDistributionCriteria() © Qadd() @ _ _constructor__()
@ setShare() < Qsub() @ authorize()
@ ddeposit() < aumul{y @ unauthorize()
@ process() < Qdivi) @ QisOwner()

@ QisAuthorized()
@ transferOwnership()

@ QtotalSupply()
@ Qeecimals()
@ Qsymbol()

@ Qnamef)

@ QgetOwner()
@ QbalanceOfi)
@ transfer()

@ Qallowance()
® approve()

@ transferFrom()

@ Qfactory()

@ QWETH()

@ addLiguiclity()

® @addLiquidityETH)

@ swapExactTokensForTokensSupportingFeeOnTransferTokens()
@ éswapExactETHF orTokensSupportingFeeOnTransferTokens()
@ swapExactTokensFeorETHSupportingFeeCnTransfer Tokens()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log VatCapCoin.soI

INFO:Detectors:
DividendDistributo
- minPer
- minDistri
VatCapCoin.setMaxT
- _maxTxAmount =
VatCapCoin.setT /LlrltlL1|t
- _max /dr'L|t = 3

.s5e tEist|iILti-rcrit-rie(Lirt:EE.LirtEEE}

) should emit an ew

INFD.Detectors
Auth.transfe

Reference:
INFO:Detector
Auth.transfe tCapCoin.sol#391)
VatCapCoin.

VatCapCoin.

VatCapCoin.

VatCapCoin.

Reference: https
INFD Detectors:
rthl ransf

INFD Detectors
Reentrancy in VatCapCoin.
nal calls:

r = II:E‘!-:é-‘t

constructor() (VatCapCoin.sol#387-412

Ccpc in. trersfer:rcr[eccress,eccress,LirtZEE}
1

sForETHSupportingFeeOnT

sit{value:
cLLI»SS‘FcIk ting

ck.timestamp)
Event

orETHSupportingFeednT

it{value: amountBNERe Tl
dress(marketil eReceiv

VatCapCoin

) should emit an

'wikiftefectcr—Echrertaticr#rissirg

eatePair(WBNE,addres

ransferTokens (amountTo

.s0l#2089-212) should emit an event for:

atCapCoin.sol#448

t for:

ent for:

{vatCapCoin.sol#654

).add(_ecosystemfee).add{_burnFee) {vatCapCoin.sol#660)

event for:

) should emit an event for:

svents -arithmetic

lacks a zero-check on

atCapCoin.
:cicépCcir.scléfEE}
missing-zero-address-validation
as external calls inside a loop: distributor.se
) has external calls inside a distributo
J#calls-inside-a-loop

s{this)) (vatCapCoin.sol#

1] (VatCapCoin.

(VatCapCoin.

ransferTokens (amountToSy

amountBNED
ToLigquify,

.call{gas: 2

ess{this),

ess(this),block.timestamp)

(VatCapCoin.sol#601

is a private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Detectors:
DividendDistributor.shouldDistribute(address) (vatCapCoin.sol#2) uses timestamp for comparisons
Dang mparisons :
- sha rClaims[shar lder] + minPeriod = block.timestamp &%
CapCoin.sol#
1 dress,address,uint256) (VatCapCoin.sol#456-504) uses timestamp for comparisons

Timer[recipient] = block.timestamp,Please wait for imin be

e: https://github.ce ytic/slithe iki/Detecte ocumentation#block-timestamp
Detectors
DividendDistributor (uint256 274) has costly operations inside a loop
- currentIn \ :
endDistributo (2 .s0l#250) has costly rations inside a 1
- currentIn a B
ce: https://github.com/crytic/slithe iki/Detecte ocumentation#costly-c
INFO:Detectors:
VatCapCoin. maxTxAmount (VatCapCoin. #) i et pre-construction with a non-constant function or state variable:
- _totalsuppl (v
VatCapCoin._maxWall cen | #) et pre-construction with a non-constant function or state variable:
- _totalsu
VatCapCoin.total in.sc i o on ction wi on-constant function or state wariable:
- marketir i iqui 2 b
VatCapCoin.s . =)1 2 o= stm t'L- n with a non-constant function or state variable:

variables

Detectors
a version™d.
] is not

e: https
Detectors
evel call in Va

- (tmpSuc

INFD:Detectors:
c|iclle IDEXRouter.addLigquidity(addre int256,uint256,uint256,uint256 \
ddress,address ,uint256,uint256,uint256,uint2 ess,uint25s amountBDesire

iki/Detector-Documentation#variable-names-are-too-similar

INFD Detectors

VatCapCoin.slithe c o 3 pCoin.)) uses litera

- DEAD = thrC in.sol#3

VatCapCoin.slit () ith too many digits:
C

ls with too many digits:

‘with too many digits:

Reference: h //github. ! y 2T, C1y tector-Documentation#too-many-digits
INFD Detectors:
] doistributor .WENE in. - d onstant

Distributor. = (VatCapCoin.sol#184) should be constant
VatCapCoin.DEAD

Reference: https:// hub . com/crytic/sli ikiys I: t»-t- r-Documentation#state-variables-that-could-be-declared-constant
INFO:Detectors:
authorize(a 2
- Auth.a
unauthorize(

th|C in.sol#424-428)

Refere : https: h o Wi C cumenta #p c-function-that-could-be-declared-external
INFO:Slither: VatCapCom sol analyzed (8 contracts “with ?5 detectors) 199 result() found
INFO:Slither:Use https: Y to get access to additional detectors and Github integration

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Security

Block timestamp:

Use of "block.timestamp": "block timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome of
a transaction in the mined block.

more

Pos: 614:16:

Low level calls:

Use of "call™: should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's interface.
more

Pos: 602:24:

Gas & Economy

Gas costs:

Gas requirement of function VatCapCoin.transferOwnership is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions
or actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 91:4:

Gas costs:

Gas requirement of function VatCapCoin.multiTransfer is infinite: If the gas requirement of a function
is higher than the block gas Umit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 706:0:

Gas costs:

Gas requirement of function VatCapCoin.multiTransfer_fixed is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions
or actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 732:0:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can
cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to
such functions to make it successful.

Pos: 636:8:

. a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can
cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to
such functions to make it successful.

more

Pos: 740:4:

ERC
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 45:4:

Miscellaneous

Similar variable names:

VatCapCoin.swapBack() : Variables have very similar names "pair" and "path". Note: Modifiers are
currently not considered by this static analysis.
Pos: 586:12:

No return:

VatCapCoin.approveMax(address): Defines a return type but never explicitly returns a value.
Pos: 430:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 708:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 709:4:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants.

Pos: 662:27:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

VatCapCoin.sol

VatCapCoin.sol:4:1: Error: Compiler version "0.8.0 does not satisfy

the r semver requirement

VatCapCoin.sol:62:5: Error: Explicitly mark visibility in function

(Set ignoreConstructors to true if using solidity >=0.7.0)

VatCapCoin.so0l:106:5: Error: Function name must be in mixedCase
.s0l1:159:1: Error: Contract has 17 states declarations but
more than 15
.s01:162:5: Error: Explicitly mark visibility of state
.s01:170:5: Error: Explicitly mark visibility of state
.501:170: : Error: Variable name must be in mixedCase
.s01:171:5: Error: Explicitly mark visibility of state
.sol:171: : Error: Variable name must be in mixedCase
.501:172:5: Error: Explicitly mark visibility of state
.s01:174:5: Error: Explicitly mark visibility of state
.s01:175:5: Error: Explicitly mark visibility of state
.s01:176:5: Error: Explicitly mark visibility of state
.501:189:5: Error: Explicitly mark visibility of state
.501:191:5: Error: Explicitly mark visibility of state
.501:202:5: Error: Explicitly mark visibility in function

(Set lgnoreConstructors to true i1if using solidity >=0.7.0)

VatCapCoin.sol:241:13: Error: Avoid to make time-based decisions in

your business logic

VatCapCoin.sol:277:61: Error: Avoid to make time-based decisions in

your business logic

VatCapCoin.sol:288:13: Error: Possible reentrancy vulnerabilities.

Avoid state changes after transfer.

VatCapCoin.so0l:288:46: Error: Avoid to make time-based decisions 1in

your business logic

VatCapCoin.so0l1:289:13: Error: Possible reentrancy vulnerabilities.

Avoid state changes after transfer.

VatCapCoin.so0l1:290:13: Error: Possible reentrancy vulnerabilities.

Avoid state changes after transfer.

VatCapCoin.sol:325:1: Error: Contract has 39 states declarations but

allowed no more than 15
.501:328:5: Error: Explicitly mark visibility of state
.501:328:13: Error: Variable name must be in mixedCase
.501:329:5: Error: Explicitly mark visibility of state
.501:329:13: Error: Variable name must be in mixedCase
.501:330:5: Error: Explicitly mark visibility of state
.s01:330:13: Error: Variable name must be in mixedCase
.s01:332:5: Error: Explicitly mark visibility of state
.801:332:21: Error: Constant name must be in capitalized

.501:333:5: Error: Explicitly mark visibility of state
.s0l:333: : Error: Constant name must be in capitalized

.s01:334:5: Error: Explicitly mark visibility of state
.s0l:334: : Error: Constant name must be in capitalized

.501:336:5: Error: Explicitly mark visibility of state
.501:341:5: Error: Explicitly mark visibility of state

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

.s0l1:342:
.s01:347:
.s01:348:
.501:349:
.s01:350:
.s0l:367:
.s01:368:

Error: Explicitly mark visibility of state
Error: Explicitly mark visibility of state
Error: Explicitly mark visibility of state
Error: Explicitly mark visibility of state
Error: Explicitly mark visibility of state
Error: Explicitly mark visibility of state
Error: Explicitly mark visibility of state
.s0l:376: Error: Explicitly mark visibility of state
.s0l1:384: Error: Explicitly mark visibility of state
.501:387:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
VatCapCoin.sol:414:32: Error: Code contains empty blocks
VatCapCoin.sol:430:66: Error: Code contains empty blocks
VatCapCoin.sol:444:5: Error: Function name must be in mixedCase
VatCapCoin.sol:444:43: Error: Variable name must be in mixedCase
VatCapCoin.sol:447:5: Error: Function name must be in mixedCase
VatCapCoin.sol:447:39: Error: Variable name must be in mixedCase
VatCapCoin.sol:476:48: Error: Avoid to make time-based decisions
your business logic
VatCapCoin.sol:477:40: Error: Avoid to make time-based decisions
your business logic
VatCapCoin.so0l:493:65: Error: Code contains empty blocks
VatCapCoin.so0l:493:74: Error: Code contains empty blocks
VatCapCoin.sol:497:71: Error: Code contains empty blocks
VatCapCoin.sol:497:80: Error: Code contains empty blocks
VatCapCoin.sol:500:49: Error: Code contains empty blocks
VatCapCoin.sol:500:58: Error: Code contains empty blocks
VatCapCoin.sol:552:5: Error: Function name must be in mixedCase
VatCapCoin.sol:557:5: Error: Function name must be in mixedCase
VatCapCoin.sol:557:34: Error: Variable name must be in mixedCase
VatCapCoin.sol:588:13: Error: Avoid to make time-based decisions
your business logic
VatCapCoin.sol:600:63: Error: Code contains empty blocks
VatCapCoin.so0l:600:72: Error: Code contains empty blocks
VatCapCoin.so0l:601:30: Error: Avoid using low level calls.
VatCapCoin.so0l:602:25: Error: Avoid using low level calls.
VatCapCoin.sol:614:17: Error: Avoid to make time-based decisions
your business logic
VatCapCoin.sol:631:5: Error: Function name must be in mixedCase
VatCapCoin.sol:635:5: Error: Function name must be in mixedCase
VatCapCoin.sol:711:5: Error: Variable name must be in mixedCase
VatCapCoin.sol:722: : Error: Code contains empty blocks
VatCapCoin.sol:722: : Error: Code contains empty blocks
VatCapCoin.sol:728: : Error: Code contains empty blocks
VatCapCoin.sol:728:66: Error: Code contains empty blocks
VatCapCoin.sol:732:1: Error: Function name must be in mixedCase
VatCapCoin.sol:736:5: Error: Variable name must be in mixedCase
VatCapCoin.sol:743: : Error: Code contains empty blocks
VatCapCoin.sol:743: : Error: Code contains empty blocks
VatCapCoin.sol:749: : Error: Code contains empty blocks
VatCapCoin.sol:749: : Error: Code contains empty blocks

oo 0 01 01 O1 U1 o1 Ol

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

