@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: MVHQ Token
Platform: Ethereum
Language: Solidity

Date: April 27th, 2022

Table of contents

Introduction

... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 15
(@ 0] 1Y/ =1 1 T To [o] 0T) 16
DISCIAIMEIS ... e 18
Appendix
o Code FIoW Diagramououoiiii s 19
o Shther RESUIS LOGuiiiiii e 20
e Solidity staticanalysis ... 24
® SOININt LiNtEr oo 27

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the MVHQ team to perform the Security audit of the
MVHQ Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on April 27th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The MVHQ is a NFT token smart contract which uses an upgradeable proxy contract,
which means the MVHQ contract can be changed after the mainnet deployment. The
MVHQ contract inherits the Initializable, AccessControlUpgradeable, StringsUpgradeable,
ERC1155, IERC1155Receiver standard smart contracts from the OpenZeppelin library.
These OpenZeppelin contracts are considered community-audited and time-tested, and

hence are not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for
MVHQ Token Smart Contract
Platform Ethereum / Solidity
File MVHQ.sol
File MD5 Hash C885E5B4D4AD580E767AF745FF8800A4

Online Code - Proxy https://rinkeby.etherscan.io/address/OXECcc2594956AF
12Ef783E3376a91A9191f7201D3#code

Online Code - https://rinkeby.etherscan.io/address/0x2809a8737477a5
Implementation 34df65c4b4cae43d0365e52035#code
Audit Date April 27th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://rinkeby.etherscan.io/address/0xECcc2594956AF12Ef783E3376a91A9191f7201D3#code
https://rinkeby.etherscan.io/address/0xECcc2594956AF12Ef783E3376a91A9191f7201D3#code
https://rinkeby.etherscan.io/address/0x2809a8737477a534df65c4b4cae43d0365e52035#code
https://rinkeby.etherscan.io/address/0x2809a8737477a534df65c4b4cae43d0365e52035#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

ERC1967Proxy.sol

ERC1967 Proxy standard
Forwards all read/write calls to implementation
Implementation contract can be changed by

the owner of proxy

YES, This is valid.

This proxy contract allows
the owner to change the main
contract logic after mainnet

deployment

MVHQ.sol

Upgradeable Contracts

Token standard: ERC721A - upgradable
Token Name: MVHQ

Token Symbol: MVHQ

Whale Requirement: 5 Tokens

The owner can flag any keys and addresses

YES, This is valid.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

All these issues have been acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 2 smart contract files. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in MVHQ Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by
other contracts in the MVHQ Token.

The MVHQ Token team has provided scenario and unit test scripts, which have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a MVHQ Token smart contract code in the form of a File.The hash of that

code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand
the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Functions
SI. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 | initialize write Passed No Issue
3 | claimKeys external Passed No Issue
4 |isWhale external Passed No Issue
5 | isKeyFlagged read Infinite loop use limited
possibility array elements
6 | getFlaggedKeys external Passed No Issue
7 | isAddressFlagged read Infinite loop use limited
possibility array elements
8 | getFlaggedAddresses read Passed No Issue
9 | setWhaleRequirement external access by No Issue
manager or a
default admin
10 | flagAddress external access by No Issue
manager or a
default admin
11 | unflagAddress external Infinite loop use limited
possibility array elements
12 | flagKey external access by No Issue
manager or a
default admin
13 | unflagKey external Infinite loop use limited
possibility array elements
14 | adminTransfer external access only No Issue
Role
15 | transferLegacyKeys external access only No Issue
Role
16 | burn write access only No Issue
Role
17 | setClaimActive external access only No Issue
Role
18 | setBaseURI external access only No Issue
Role
19 | withdraw external access only No Issue
Role
20 | transferOwnership external access only No Issue
Role
21 | startTokenld internal Passed No Issue
22 | tokenURI read Passed No Issue
23 | supportsinterface read Passed No Issue
24 | beforeTokenTransfers internal Infinite loop use limited
possibility array elements
25 | onERC1155Received external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

26 | onERC1155BatchReceived external Passed No Issue
27 | managed modifier Passed No Issue
28 | initializer modifier Passed No Issue
29 | reinitializer modifier Passed No Issue
30 | onlylnitializing modifier Passed No Issue
31 | disablelnitializers internal Passed No Issue
32 | setlnitializedVersion write Passed No Issue
33 AccessControl init internal Passed No Issue
34 AccessControl init unchained | internal Passed No Issue
35 | onlyRole modifier Passed No Issue
36 | hasRole read Passed No Issue
37 | checkRole internal Passed No Issue
38 | getRoleAdmin read Passed No Issue
39 | grantRole write Passed No Issue
40 | revokeRole write Passed No Issue
41 | renounceRole write Passed No Issue
42 | setupRole internal Passed No Issue
43 | setRoleAdmin internal Passed No Issue
44 | grantRole internal Passed No Issue
45 | revokeRole internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) High gas consuming loops

function unflagAddFess{address address) external managed {
for (uint256 i = @; i <« flaggedAddresses.length; i++) {

if (flaggedAddresses[i] == address_) {
flaggedAdddresses[i] = flaggedAddresses[flaggedAddresses.length - 1];
flaggedAdddresses.pop();
break;

¥

emit AddressUnflagged(msg.sender, address_);

If the flaggedAddresses array size becomes larger, then it will cost more and more gas to
to flag/unflag the wallets. In case this array length becomes so large that it will hit the

block's limit and stop this admin function. This is also true for the flaggedKeys array.

Resolution: We suggest adjusting the logic such that it avoids using loops to add/remove
elements from the array. For example, if you can store the array index in the mapping,
then the array index for a particular wallet can be obtained from the mapping and there

would not be any need for the "loop" to remove the element from this array.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Owner can move anyone's tokens

function adminTransfer(
address from_,
address to_,
uint256 tokenId_
) external onlyRole({DEFAULT_ADMIN_ROLE) {
adminTransferFrom{from, to_, tokenId);
emit AdminTransfer({msg.sender, from_, to_, tokenId);

Using the function adminTransfer, the owner can transfer any user's tokens. If this is a
desired feature, then this point can be ignored. But this may create fear in users that their
tokens can be taken away anytime, if the owner's wallet private key would be
compromised. The same thing with the "Burn" function. The owner can burn any user's

tokens.
Resolution: If this is not a required feature, then we suggest removing it.

Status: Acknowledged

(3) Missing event logs

It is recommended to fire an event where the significant state of the smart contract is being
changed. This helps clients (Ul) to interact with the blockchain. Following function can

have events:
e \Withdraw
Resolution: Add an event in above function

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Redundant withdraw function

function withdraw() external payable onlyRole({DEFAULT_ADMIM ROLE} {
£ solhint-disable-next-Lline avoid-Llow-Llevel-calls

(bool success,) = payable(msg.sender).call{value: address{this).balancel}("");

if (!success) revert FailedToWithdraw();

.

The contract does not have a fallback or receive function. So, there is no way the ether
can enter into the smart contract. Therefore the withdraw function will never be used and

thus it becomes redundant.
Resolution: We suggest removing it, if that does not serve any purpose.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

o setWhaleRequirement: An admin / manager can be used to set the whale
requirement values.

o flagAddress: It is used to flag an address and remove the ability for it to transfer
keys callable by admin or manager.

e unflagAddress: Itis used to remove the flag of an address and restore the ability
for it to transfer keys callable by admin or manager.

o flagKey: Itis used to flag a key and make it non transferrable callable by admin or
manager.

e unflagKey: Itis used to remove the flag of a key and restore the ability for it to be
transferable callable by the admin or manager.

e adminTransfer: Admin can transfer a token from one address to another and is
meant to be used with extreme care only callable from an address with the admin
role.

e transferLegacyKeys: Admin can be used to transfer legacy keys to an address.

e burn: Admin will burn the keys minted from this address.

e setClaimActive: Admin can toggle the claiming functionality.

e setBaseURI: Admin can set the baseURI for metadata.

e withdraw: Admin can withdraw amount in case anyone sends ETH to contract by
mistake.

e transferOwnership: Admin can be used to set a new owner value.

_authorizeUpgrade: Admin can UUPS Upgradeable authorization.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We have observed some issues and they are acknowledged by the MVHQ

team. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix
Code Flow Diagram - MVHQ Token

Do
=
==
ERry
——
e
e
© Qbaanceot))
o=,)
Soe=tn -
S
o Qaromaran) T beste_TEX VB o opving
g maen
e i S
© _safeTransferfrom() QtoHexString() E)
S i
¢ e e
-
SErron
fy
=
S
e
S
e
o e e
Sty
’ \
for address ~
4 ®
A
@) avaress 5 | \ ecessConrolpgradesdie
\ IERC1155Receiver
e [@c | [@ crcrroovemsaain) T @ |
s
S e —
e o g
s © Qpsgoata) s qui) © QskeyPagged) [eowmy |
: S i
S & Seemeny
Quertycamens) | © Qgeriopgedadaresses)
| Se
/ S
!
O
e
| (s \ /
/ /
/ o CEzzTrw—
e
o ; e
[€)) ERresipgrsdeatie = .
i oS S e
CET_ Tt
0 IERC165 IERCT21MetadataUpgradeable
— —r =
jsApprovedFor Al) © onERC1155BatchReceived() —ERCT21A i)
e nom—
© safeBatchTransferFrom() O Q_startTokenld() -
] e
paen)

\ ® L \ [6) (© Erc1ssUpgraeati
L 3 IAccessControlUpgradeable| e
Intislizable Iniializable =
@ rerores o) @ | [@] |
O uint2s6 _gap b 4 E 4 4
© _ERC165_nit0)
\ © __ERC165_nit_unchained()

@© mozme | /
O untd_intiskzed “RC165Upgradeable)
O bool intiaizng

=

©_asabientiszers()
B setitiaizedversion)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> MVHQ.sol

INFO:Detectors:
MVHQ . transfer

Reference: https:/
INFO:Detectors:
A 1 '"ERC1155._
d Eafe'rarsf
response
'ERCllEE.

iéLlr 'ERCll““

in ERC115
tially used b
Variable 'ERC1155.
' in ERC1155
ally use
Rete -H
INFO: Detectors
Reentrancy in

External

Reentranc

E;t-llcl calls:
0SSF scT- ransferFrom(ess(this),to_,05M\ ytes(Bx0)) (MV
v after tf

MVHO.claimKeys{)
alls:

- 0SSF scf»_lcrsfel—l-rlrsr

TransferA
ptanceChe

IERCllESR

,'““r‘ss address,uint2
55, Lllt“

rrSS,LiFT:EE[],LiFt

:réss,LirtESE[],LirtESE[]

(MVHQ.sol#794-810):
S-I aer

,address(this),05MVHQ_TOKENID,claimable byt

Transferr

Refe
INFO: Detectors
Address.

erence:
- INLINE ASM

Reference:
INFO:Detectors:
essControlUp
essControlUp
essControlUp

: http
INFD.Detectqrs

verifyCallResult(

es{Bx0)) (M

nse (MVHQ.sol#713
potentially us

{MVHO .501#717)
otentially use

-of-local-variables

HQ . sol#ar

/HQ . sol#882

882

-vulnerabilities-3

,string) (MVHQ.sol#72-

{MVHQ.s01#281-299) uses assembly

and should
should b

and should be

/slither/wiki/Detector-Documentation#dead-code
a version too recent to be trusted

wiki/Detector-Documentation#incorrect rsions-of

HO.sol#34

tLIIthc

ess. tunc

turndata
ress. fun
turndata

ction
ction

Fun
Fun

ERleELL radeab

cessCo ntrolUp
essCo |t|-1Lp

MVHQ {MVHQ.sol#756-
- IERC1155Re
- IERC1155Re
- IERC1
Refere

{(MVHQ.

Consider deployi

remo

ng with 8.6.12

-solidity

sol#2

1-280):

ntext_init() (MVHQ. 3) 15 not in mixedCase
t»/t init_unc Falr, (MVHQ . 356 7) is not in mixedCase
t in mixedCase

74) is not in mixedCase

is not in mixedCase

n mixedCase

N mix
) is not in mixedCase
cumentation#conformanc

s not imple

|..|ERC115EB

e-to-solidity

; is a private and confidential document. No part of this document should

be disclosed to third party without prior written perm

Email: audit@EtherAuthority.io

on of EtherAuthority.

Detectors

burn{uin

(17 contracts with

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

MVHQ.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
Address.functionCallWithValue(address,bytes,uint256,string): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

Pos: 124:4:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in MVHQ.transferLegacyKeys(address):
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

more

Pos: 1795:4:

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return value
is not handled properly. Please use Direct Calls via specifying the called contract's interface.

more

Pos: 1828:27:

Gas & Economy

Gas costs:

Gas requirement of function ERC1155.safeBatchTransferFrom is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions
or actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1207:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can
cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to
such functions to make it successful.

Pos: 1695:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Constant/View/Pure functions:

MVHQ._authorizeUpgrade(address) : Potentially should be constant/view/pure but is not. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 1872:4:

Similar variable names:

MVHQ _setBaseURI(string) : Variables have very similar names "baseURI" and "baseURI_". Note:
Modifiers are currently not considered by this static analysis.
Pos: 1822:53:

No return:

IAccessControlUpgradeable.getRoleAdmin(bytes32): Defines a return type but never explicitly
returns a value.
Pos: 533:4:

No return:

MVHQ.isWhale(address): Defines a return type but never explicitly returns a value.
Pos: 1688:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 1450:12:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 1471:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

MVHQ.sol

.501:1250:18: Error: Parse error: missing ';' at
.501:1292:22: Error: Parse error: missing ';' at
.s01:1417:18: Error: Parse error: missing ';' at
.s01:1451:22: Error: Parse error: missing ';' at
.501:1586:6: Error: Parse error: missing 'constant
'ClaimingNotActive'
MVHQ.s01:1586:23: Error: Parse error: missing '=' at '('
MVHQ.s0l1:1587:6: Error: Parse error: missing 'constant' at
'ApprovalRequired’
MVHQ.s01:1587:22: Error: Parse error: missing '=' at ' ('
MVHQ.s01:1588:6: Error: Parse error: missing 'constant' at
'NoClaimableKeys'
MVHQ.s01:1588:21: Error: Parse error: missing '=' at ' ('
MVHQ.s01:1589:6: Error: Parse error: missing 'constant' at
'NoLegacyKeysToTransfer'
MVHQ.s01:1589:28: Error: Parse error: missing '=' at '('
MVHQ.s01:1590:6: Error: Parse error: missing 'constant' at
'FailedToWithdraw'
MVHQ.s01:1590:22: Error: Parse error: missing '=' at '('
MVHQ.s01:1591:6: Error: Parse error: missing 'constant' at
'FromFlaggedAddress'
MVHQ.s01:1591:24: Error: Parse error: missing '=' at ' ('
MVHQ.s01:1592:6: Error: Parse error: missing 'constant' at
'ToFlaggedAddress'
MVHQ.s01:1592:22: Error: Parse error: missing
MVHQ.s01:1593:6: Error: Parse error: missing
'KeyIsFlagged'
MVHQ.s01:1593:18: Error: Parse error: missing '=' at '('
MVHQ.s01:1594:6: Error: Parse error: missing 'constant' at
'Unauthorized’
MVHQ.s0l1:1594:18: Error: Parse : missing '=' at ' ('
MVHQ.s0l1:1664:50: Error: Parse : mismatched input ' expecting
{v;v, V:V}
MVHQ.s0l1:1665:86: Error: Parse : mismatched input expecting
{';', '="}
MVHQ.s01:1668:50: Error: Parse : mismatched input expecting
{';', '="}
MVHQ.s01:1797:55: Error: Parse : mismatched input expecting
{v;v, |:|}
MVHQ.s01:1829:45: Error: Parse error: mismatched input ' (' expecting
{v’.v, v:|}
MVHQ.s01:1885:111: Error: Parse error: mismatched input '(' expecting

{v;v, =]

)

=7 af |(|
constant' at

Software analysis result:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

