@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: LibraX Finance
Website: https://librax.finance
Platform: Astar Network
Language: Solidity

Date: April 26th, 2022

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 13
AUt FINAINGS oo e 14
@70 o T3 1017 T o 19
(@ 0] 1Y/ =1 1 T To [o] 0T) 20
DISCIAIMEIS ... e 22
Appendix
o Code FIoW Diagramououoiiii s 23
o Shther RESUIS LOGuiiiiii e 26
e Solidity staticanalysis ... 31
® SOININt LiNtEr oo 37

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the LibraX Finance team to perform the Security audit of
the LibraX protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 26th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

LibraX is an automated market-making (AMM) decentralized exchange (DEX) for the Astar
network. LibraX Finance smart Contract has functions like mint, transfer, permit,

createPair, setFeeToSetter, setFeeTo, burn, swap, skim, getBlockHash, etc.

Audit scope

Name Code Review and Security Analysis Report for
LibraX Protocol Smart Contracts

Platform Astar Network / Solidity
File 1 UniswapV2ERC20.sol
File 1 Github Commit 037f07f46d9e921f5fdf28a07e2ce7885ad0e20f
File 2 UniswapV2Factory.sol
File 2 Github Commit 19eed777eab19602d011f27b39e4bb1c499c6042
File 3 UniswapV2Pair.sol
File 3 Github Commit 19eed777eab19602d011f27b39e4bb1c499c6042
File 4 UniswapV2Router02.sol
File 4 Github Commit 19eed777eab19602d011f27b39e4bb1c499c6042
File 5 Multicall.sol
File 5 Github Commit 19eed777eab19602d011f27b39e4bb1c499c6042
Audit Date April 26th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/LibraXFinance/librax-core/blob/main/contracts/UniswapV2ERC20.sol
https://github.com/LibraXFinance/librax-core/blob/main/contracts/UniswapV2Factory.sol
https://github.com/LibraXFinance/librax-core/blob/main/contracts/UniswapV2Pair.sol
https://github.com/LibraXFinance/librax-core/blob/main/contracts/UniswapV2Router02.sol
https://github.com/LibraXFinance/librax-core/blob/main/contracts/multicall/Multicall.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 UniswapV2ERC20.sol YES, This is valid.
e Name: LibraX LP
e Symbol: LXLP

e Decimals: 18

File 2 UniswapV2Factory.sol YES, This is valid.

e Generates trading pairs

File 3 UniswapV2Pair.sol YES, This is valid.
e |t serves as an automated market maker and
keeps track of pool token balances.
e Minimum Liquidity: 1000

File 4 UniswapV2Router02.sol YES, This is valid.
e It supports all the trading functions for many pairs.
e It has functions like: receive, addLiquidity,
addLiquidityETH, etc.

File 5 Multicall.sol YES, This is valid.
e It Aggregates results from multiple read-only
function calls
e It has functions like: aggregate, getEthBalance,

getBlockHash, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do not contain owner control, which does make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

These issues are fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the LibraX Protocol are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the LibraX Protocol.

The LibraX team has provided unit test scripts, which have helped to determine the

integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a LibraX Protocol smart contract code in the form of a Github web link.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

UniswapV2ERC20.sol

Functions

SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 mint internal Passed No Issue
3 burn internal Passed No Issue
4 approve write Passed No Issue
5 transfer write Passed No Issue
6 | approve external Passed No Issue
7 | transfer external Passed No Issue
8 | transferFrom external Passed No Issue
9 | permit external Passed No Issue

UniswapV2Factory.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | allPairsLength external Passed No Issue
3 | pairCodeHash external Passed No Issue
4 | createPair external Passed No Issue
5 | setFeeTo external Passed No Issue
6 | setFeeToSetter external Passed No Issue

UniswapV2Pair.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 mint internal Passed No Issue
3 burn internal Passed No Issue
4 approve write Passed No Issue
5 transfer write Passed No Issue
6 | approve external Passed No Issue
7 | transfer external Passed No Issue
8 | transferFrom external Passed No Issue
9 | permit external Passed No Issue
10 | lock modifier Passed No Issue
11 | getReserves read Passed No Issue
12 | safeTransfer write Passed No Issue
13 | initialize external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

14 | update write Passed No Issue
15 | mintFee write Passed No Issue
16 | mint external Passed No Issue
17 | burn external Passed No Issue
18 | swap external Passed No Issue
19 | skim external Passed No Issue
20 | sync external Passed No Issue
UniswapV2Router02.sol
Functions
SI. Functions Type Observation Conclusion
1 [constructor write Passed No Issue
2 |ensure modifier Passed No Issue
3 | receive external Passed No Issue
4 addLiquidity internal Passed No Issue
5 [addLiquidity external Passed No Issue
6 | addLiquidityETH external Passed No Issue
7 | removeliquidity write Passed No Issue
8 | removeliquidityETH write Passed No Issue
9 | removeliquidityWithPermit external Passed No Issue
10 | removeliquidityETHWithPermit | external Passed No Issue
11 | removelLiquidityETHSupporting write Passed No Issue
FeeOnTransferTokens
12 | removeLiquidityETHWithPermit | external Passed No Issue
SupportingFeeOnTransferToke
ns
13 [swap internal Passed No Issue
14 | swapExactTokensForTokens external Passed No Issue
15 | swapTokensForExactTokens external Passed No Issue
16 | swapExactETHForTokens external Passed No Issue
17 | swapTokensForExactETH external Passed No Issue
18 | swapExactTokensForETH external Passed No Issue
19 | swapETHForExactTokens external Passed No Issue
20 | _swapSupportingFeeOnTransf | internal Passed No Issue
erTokens
21 | swapExactTokensForTokensSu | external Passed No Issue
pportingFeeOnTransferTokens
22 | swapExactETHForTokensSupp | external Passed No Issue
ortingFeeOnTransferTokens
23 | swapExactTokensForETHSupp | external Passed No Issue
ortingFeeOnTransferTokens
24 | quote write Passed No Issue
25 | getAmountOut write Passed No Issue
26 | getAmountin write Passed No Issue
27 | getAmountsOut read Passed No Issue
28 | getAmountsin read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Multicall.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | aggregate write Passed No Issue
3 | getEthBalance read Passed No Issue
4 | getBlockHash read Passed No Issue
5 [getLastBlockHash read Passed No Issue
6 | getCurrentBlockTimestamp read Passed No Issue
7 | getCurrentBlockDifficulty read Passed No Issue
8 [getCurrentBlockGasLimit read Passed No Issue
9 | getCurrentBlockCoinbase read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) Missing event logs in UniswapV2Factory.sol

It is best practice to fire an event when a significant state change is happening. It helps

clients interact with the blockchain. We suggest to add events in following functions:

e setFeeTo

o setFeeToSetter
Resolution: Add appropriate events in above functions.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Consider using the latest solidity version while contract deployment to prevent any
compiler version level bugs. There are many features introduced and many security bugs

are fixed so it is a good practice to use the latest solidity version.
Resolution: Please use the latest solidity version.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of github repositories. And we have used all
possible tests based on given objects as files. We had observed some issues in the smart
contracts, but those issues are not critical ones. So, the smart contracts are ready for

the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - LibraX Protocol

UniswapV2ERC20 Diagram

@ UniswapV2ERC20

inSafelath for Wint2356

 string name

2 string symiol
2 uintE decimals

O uint256 totalSupply

O address==Uint256 balanceOf

2 address=>mapping address=>uUint256 allowance
O hytes32 DOMAIN_SEPARATOR

O bytes32 PERMIT_TYPEHASH

O address==Uint256 nonces

2 _ _constructor__ ()
& _mirt()

< _purn)

B _approve()

B _transfer()

@ approve()

@ trangfer()

@ transferFrom()

@ permit)

|
|
:for wint2a6

Y7

y
@ SafeMath

< Qacd()
< Qsubl)
< Gmully

Multicall Diagram

@ Multicall

@ aggregate()

@ O getBthBalance()

@ O getBlockHash()

@ O getLastBlockHashi)

@ O getCurrentBlockTimestamp()
@ QgetCurrentBlackDifficutty()
@ QgetCurrentBlockGasLimit()
@ O getCurrentBlockCoinbase()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(@) math

< aming)
& Qusqrt()

@ rerczo

@ Qname()

@ Qsymbol)

@ Qdecimals()
@ QtotalSupply()
@ Qbalance0f()
© Qallowance()
@ approve()

@ transfer()

@ transferFrom()

@ IUniswapV2Callee

UniswapV2Factory Diagram

© UniswapV2Pair

UniswapV2ER G20

nSafeMath for wint
WUQT1 2112 for wint224

O wint MINIMUM_LIGUIDITY
O bytes4 SELECTOR

© address factory

< address token

O address tokenl

O uint112 reserved

O wint112 reservel

< uint price0Cumulativel ast
@ uint price’ Cumulativel ast
O uint klLast

O wint unlocked

O wint32 blockTimestampLast

© UniswapV2Factory

WUniswapV2Factory

O hytes32 INT_CODE_PAIR_HASH

[+]

O address feeTo

O address feeToSetter
address==ma
© address allPairs

ing address==address

getPair

@ QgetReserves()
| _safeTransfer()
@ _ _constructor__{)
@ intialize()

B _update()

B _mirtFes()

@ mirt()

@ burn()

@ swap()

@ skim()

@ syne()

@ _ constructor_ ()
@ QuallPairsLength()
@ QpairCodeHash()
@ createPair()

@ setFeeTo()

@ setFeeToSetter()

I."for wint224

\
@ vatiaxtiz |

< uint224 @112

I for wint

@ uniswaph2Call()

< Quugedivl)

< Qencode()

< Qadd()
© Qsub()
@ amul()

@ UniswapV2ERC20

i SafeMath for wint256

@ string name

O string symbol

O uints decimals

O uirt256 totalSupply

@ address=>uint256 balanceOf

O address==mapping address=>uint258 allowance
© hytes32 DOMAIN_SEPARATOR

O hytes32 PERMIT_TYPEHASH

O address=>uint256 nonces

@ IUniswapV 2Factory

@ _ constructor__{)
< _mint()
< _purn()
H _approve()
B _transfer()
@ approve()
@ transfer()
@ transferFromi)
@ permit()
L

o QfeeTo()

@ O feeToSetter()
© QgetPair()

© QallPairs()

@ QalPairsLength()
@ createPair()

@ setFesTol)

@ setFeeToSetter()

s
! / for wint256
s

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ Math

< amin)
< Qusgrt)

UniswapV2Pair Diagram

@ IERC20

@ Qname()

@ Qsymbol()

@ Qdecimals()
@ QiotalSupply()
@ Qbalancedf()
@ Qallowance()
@ approve()

@ transfer()

@ transferFrom()

@ IUniswapV 2Callee

D uniswap' 2Call()

@ IUniswapV 2Factory

© UniswapV2Pair

UniswapV2ERC20

nSafelMath for wint
WAUGTI2x112 for wint224

< wint MINIMUM_LIQUIDITY
O bytes4 SELECTOR

2 address factory

< address token0

2 address tokent

O uint112 reserved

O uirt112 reservel

O uint32 blockTimestampLast
O wint price0Cumulativelast
O uint price! Cumulativel ast
O uint kLast

O wint unloched

QgetReserves()
_safeTransfer()
__constructor_ ()
initialize()

_update()
_mintFee()

20O OHENEOOHE D

@ QfeeTol)

@ QfeeToSetter()
@ QgetPair()

@ QallPairs()

@ QallPairsLength()
D createPair()

@ setFeeTal)

@ setFeeToSetter()

®U0112x112

< uint224 @112

< Qencode()
& Qugdiv()

@ UniswapV2ERG20

inSafeMath for wint256

O string name

© string symhbol

O uints decimals

O uint256 totalSupply

O acdress==uint256 balanceOf

O address==mapping address==wint256 allowance
O bytes32 DOMAIN_SEPARATOR

O bytes32 PERMIT_TYPEHASH

O address==uint256 nonces

@ _ eonstructor__()
< _mint()
< _burn()
B _approve()
B _transfer()
D approve()
@ transfer()
@ transferFrom()
@ permit()
r

Y P
(&) satematn

< Qadd()
& Cysub()
< amul()

s
¢ for uint256
r

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

UniswapV2Router02 Diagram

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@ TransferHelper

<» safelpprove()

< safeTransfer()

< safeTransferFrom()
< safeTransferETH()

@ Uniswap¥V2Router02

UiniswapVZRouter(2
nSafeMath for wint

O address factory
O address WETH

(@) rerc20

@) merH

@ ddeposit{)
@ transfer()
@ withdraw()

@ Qname()

@ Qsymbol()

@ Qcecimals()
@ QtotalSupply()
@ QbalanceCf()
@ Qallowance()

@ approve()
@ transfer()
@ transferFrom()

@ IWniswapV2Pair

@ IUniswapV/ 2Factory

@ QfeeTof)

@ O feeToSetter()
@ QgetPair()

@ QallPairs()

@ QallPairsLengthi)
@ createPair()

@ setFeeTol)

@ setFeeToSetter()

@ Qname{)

@ Qsymbol()

@ Qdecimals()

@ QtotalSupply()

@ QbalanceOf()

@ Qallowance()

@ approvel()

@ transfer()

@ transferFrom()

@ QDOMAIN_SEPARATOR()
© QPERMIT_TYPEHASH()
@ Qnonces()

@ permit()

@ QMINIMUM_LIGUIDITY ()
@ Qfactory()

@ Qtokend()

@ Qtokent()

@ QgetReserves()

@ Qprice0Cumulativelast()
@ Qpricel Cumulativelast()
@ QyLast()

@ mint()

@ burn()

@ swap()

@ skim()

@ sync()

@ intialize()

@ &_ constructor_ ()

< _addLiguicity()

addLiguidity()

daddLiquidityETH()

remaveLiguidity)

removeLiguidityETH()

removeLiguidityWvithPermit()

removeLiguidit yETHWIthPermit()
removeLiguidtyETHSupportingF eeOnTransferTokens()
removeliguidityETHARhPermitSupportingFeeOnTransferTokens()
< _swap()

@ swapExactTokensFor Tokens()

@ swapTokensForExactTokens()

@ dswapExactETHF orTokens()

@ swapTokensForExactETH])

@ swapExactTokensForETH()

@ éswapETHForExactTokens()

© _swapSupportingFeeOnTransferTokens()

@ swapExactTokensFor TokensSupportingFeeOnTransferTokens()
@ dswapExactETHF orTokensSupportingFeeOnTransferTokens()
@ swapExactTokensForETHSupportingFeeOnTransferTokens()
@ Qquote()

@ QgetAmountOut])

@ QgetAmounting)

@ QgetAmountsOut()

@ QgetAmountsin()

o000 Q@®@Q

"
N

@ UniswapV2Library

mSafeMath for wint256

< O sortTokens()

< S pairFar()

< O getReserves()
< Quuote()

< QgetAmourtOut()
< QgetAmourting)
< QgetAmountsOut()

< QgetAmountsing)
T

N
for uint ifor uint256
A |
A]
[
|
I
\
\ I
\ |
| |
\ |
\ |
i I
- akvi
@ IUniswapV'2Router02 v
WniswapV2Router01 @ SafeMath
@ removeliguidityETHSupportingF eeOnTransferTokens() & Qadd()
@ removeLiguidityETHAthPermit SupportingFeeOnTransferTokens() < Qsub()
@ swapExactTokensFor TokensSupportingFeeOnTransferTokens() < amul)
@ @swapExactETHF orTokensSupportingFeeCnTransferTokens()

@ swapExactTokensForETHSuppertingFeeCnTransferTokens()

@ wniswapv2Routerot

@ Qfactory()

@ QWETH()

@ addLiquicity()

@ daddLiguidityETH()

@ removeliguidity()

@ removeLiguidityETH()

@ removelLiquidityWithPermit()

@ removelLiquidityETHWithPermit()
@ swapExactTokensForTokens()
@ swapTokensForExactTokens()
@ dswapExactETHFor Tokens()
@ swapTokensForExactETH()

@ swapExactTokensFarETH()

© @swapETHForExact Tokens()
@ Qguote()

@ QgetAmountOut()

@ QgetAmourtin)

@ Q.getAmountsOut()

@ QgetAmountsing)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> UniswapV2ERC20.sol

INFO:Detectors: i
UniswapV2 p armit(ress, ress,uint256,uint256,uintd,bytes32,bytes32) (UniswapV2ERC28.s501#106-126) uses timestamp for
parisons

ck . timestamp,Unisw 2: EXPIRED) (UniswapV2
ki/Detector-Documentation#block-timestamp

/2ERC2 assembly
- INLINE
http gi crytic/slithe «i/Detector-Documentation#assembly-usage
INFO: Detectors
SafeMath.mul(uint256,uint2

<] Llls\cr”

C http C
INFO:51lither: UanwapVZERC29 sol analyzed (2 contracts wtth ?5 detectors), 6 result(s) found
INFO:Slither:Use https: yti to get acce to 2 2 ete 5 and b egration

INFO:Detectors:

Lriswapwlpair.iritlali
- tokent

UniswapV2Pair. 1|1t1=11

Uniswal

UniswapV2

2 https:
INFD Detectors
Reentrancy in Unisw

_update(balance@
- ||1--1CLrL1 tiveLast += uint2

ce: https github.ct ytic/slither/wiki/Detector-Documentatio
INFD Detector i
/ ermit({address,address,uint256,uint256,uint8,bytes32,bytes32) (UniswapV2Factory. #17) uses timestamp for

= block.timestamp, 8 C ¥ 1
,Ll\t_EC LllTll: uint112) (Unisw C y.sold) uses timestamp for comparisons

y.sol#264)

INFO:Detectors:
UniswapV2ERC2E
- INLINE HCV

INFO: Detectors:
Low level call in Unis
- (success

2 https
INFD Detectors:
Variable Unisw RC20 .DOMAIN
Param i i .1|1t10114 5 = { c is not in mixedCase
Parameter i .initializ re { 151) is |-t il ri/ec(ase
Parameter 2 f
Parameter Unisw actory.se 2 er(a e feeT tt ry.sol#43 i mixedCase

z / T:rrarrc—t-—s 11-1t-—|cr1rg— entions
INFD Detectors
Variable UniswapV2Pair.swap(uint256,uint256 T bytes).bala j (Unisy ctory.sol4) is teo similar to Uniswa

ir.swap({uint i

r.pricelCumulativeLast {Un

h too many digits:

() uses literals with too man
- INIT_CODE_PAIR_HASH = k <256(bytes)(abi.encode ype() (ir).creationCo

github.

INFO: SlLther Use

is a private and confidential document. No part of this document should
losed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> UniswapV2Pair.sol

INFO:Detectors:
UniswapV2Pair.initialize(address,address)._token® (UniswapV2Pair.sol#254) lacks a zero-check on
- tokend® = _tokend (UniswapV2Pair.sol#256)
UniswapV2Pair.initialize(address,address)._tokenl 'thS GPJAPGIF sol#254) lacks a zero-check on
- token1 token1 (UniswapV2Pair.s
Reference: https://github. CDW’CIleCfsllthﬂlf\lklfDQtﬁctDF Documentat ion#missing-zero-address-validation
INFO:Detectors:
Reentrancy in UniswapV2Pair.burn{address) {UniswapV2Pair.sol#322-344):
External calls
- safeTransfer{ tokend,to,amount®) (UniswapV2Pair.sol#336)
- {success,data) = token.call{abi. thojﬂulthcﬂlﬂ tD|I°ELEC OR,to,v (UniswapV2Pair.sol#
ransfer(_tokenl,to,amountl) (UniswapV2Pair.sol#337
- {success,data) = token.call(ab .AncojAUIthcﬁlﬁctolICELEC OR,to,v (UniswapV2Pair.sol#
rariables written after the call(s):
_update({balanced,balancel,_reserv reservel) {UniswapV2Pair.sol#341)
- priceBCumulativelast += uint256{UQ112x112.encode{_reservel).ugdiv(_reserved)) * timeElapsed (UniswapV2Pair.so

IUniswapV2Callee(to).uniswapV2Call(msg.sender,amountB0ut,amountl0ut,data) (UniswapV2Pair.sol#360)
vent emitted after the call(s):
ap(msg.sender,amount@In,amountlIn,amountBOut,amountlOut,to) (UniswapV2Pair.sol#374)
nc{rese ,rese 1) iLnis‘apVEPair.sol«gTS‘
- update(balance@,balancel, res ,_reservel) (UniswapV2Pair.sol#373)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentr nCy—-ulnerabilities—S
INFO:Detectors:
UniswapV2ERC28.permit(address,address,uint256,uint256,uint8, bytes32, bytes32) (UniswapV2Pair.sol#176-196) uses timestamp for com
arisens
Dangerous comparisons:
- reguire(bool,string)({deadline == block.timestamp,UniswapV2: EXPIRED) (UniswapV2Pair.sol#185)
UniswapV2Pair. upﬂatnfuiHTZEE uint256,uint112,uint112) (UniswapV2Pair.sol#261-274) uses timestamp for comparisons
Dangerous CDWPaIlSDHS
- timeElapsed = 0 && _reserv _reservel ! {UniswapV2Pair.sol#265)
Reference: https ffglthub com/erytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detecto
UniswapV2ERC constructor() (UniswapV2Pair.sol#1087-121) uses assembly
- INLINE ASM (UniswapV2Pair.sol# -111)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
Low level call in UniswapV2Pair._safeTransfer{address,address,uint256) (UniswapV2Pair.sol#232-235):
- (success,data) = token.call{abi.encodewithSelector(SELECTOR,to,value)) (UniswapV2Pair.sol#233)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Variable UniswapV2ERC20.DOMAIN_SEPARATOR (UniswapV2Pair.sol#99) is not in mixedCase
Parameter UniswapV2Pair.initialize(address,address)._token® (UniswapV2Pair.sol#254) is not in mixedCase
Parameter UniswapV2Pair.initialize(address,address)._tokenl {UniswapV2Pair.sol#254) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
Variable UniswapV2Pair.swap(uint256,uint256,address,bytes).balancefAdjusted (UniswapV2Pair.sol#368) is too similar to UniswapV2
i i ,address ,bytes) .balancelAdjusted {UniswapV2Pair.sol#369)
p|1ceuCuwu1at1u Last (UniswapV2Pair.sol#214) is too similar to UniswapV2Pair.pricelCumulativelLast (Unisw

pVv2ZPatir.s
Reference: https //github.com/crytic/slither/wiki/Detector-Documentation#variable-names-are-too-similar
INFO:Slither: Unlswapvzpalr sol analyzed (8 contracts wtth 75 detectors), 29 result(s) found

INFO:5lither:Use

INFO:Detectors:

UniswapV2Router@2.constructor({address,address). factory (UniswapV2Router82.sol#391) lacks a zero-check on

factory = _factory (UniswapV2Route s0l#392)

constructor(address,address). WETH {UniswapV2Router82.sol#391) lacks a zero-check on

WETH = _WETH (UniswapV2Rout .sol#393)

Reference: https //github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

INFO:Detectors:

UniswapV2Router wap(uint256[],address[],address) (UniswapV2Router®2.sol#580-591) has external calls inside a loop: IUniswap
2Pair(UniswapV2Library.pairFor(factory, input,output)).swap(amountB0ut,amount10ut,to,new bytes{8)) (UniswapV2RouterB2.sol#587-58

UniswapV2Router®

UniswapV2Routerd wapSupportingFeeDn ransferTokens{address[],address) Iths-aprRoutn|u‘.sol#63 i) has external calls insi
e a loop: (res F rvel) = Pail.thRQSQF‘ s{) (UniswapV2Route
UniswapV2Router®2._s apcuppowtl gFeeOnTransferTokens{address[],address) Iths\apb‘Routn s) has external calls insi
e a loop: amountInput = IERC20(input).balance0f(address{pair)).sub(reserveInput) (UniswapV2Router82.sol#699)
UniswapV2Router82. swapSupportingFeeOnTransferTokens{address[],address) (UniswapV2Router02.sol#689-706) has external calls insi
e a loop: pair.swap(amountBOut,amountlOut,to,new bytes(8)) (UniswapV2Router@2.sol#704)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop
INFD Detectors:
TransferHelper.safeApprove(address,address,uint256) (UniswapV2Routerf2.sol#6-10) is never used and should be removed
Reference: https://github. CDWfCIvtlcfsllthQIf\lklfDQtQCtDI Documentation#dead-code
INFO:Detectors:
Low level call in TransferHelper.safeApprove(address,address,uint256) (UniswapV2Router82.sol#6-18):

(success,data) = token.call{abi.encodeWithSelector 7b3, alue)) {UniswapV2Routerg2

call in TransferHelper.safeTransfer({address,address,uint256) (UniswapV2Routerd2.sol#12-16):

(success,data) = Dkﬂn.calliabl.encode‘ithSelectDr a9659chb, to,value)) (Unisw

call in 'ransfnrHelper.Safn_l ansferFrom{address,address,address ,uint256) i

(success,data) = t _'.Calllabl AncojAUItMCAIACTDr f

call in Tran

(success) o \ H e} nes f (B8)) 'LHIS\GPJLRDUTQ_

https://github. CDWIC|wt1cfsllthn|f\lklfDntnctor Documentat ion# 10\—1a el-calls

Function ' WETH({ } {UniswapV2 = sol#21) 1s not in mixedCase

Function i f DDMAIN_SEPARA‘DR[} {Unisway outerd2.sol#231) is not in mixedCase

Function i f2 .PERMLT_TYPEHASH{) (UniswapV2Router@2.sol#232) 1is not in mixedCase

Function IUniswapV2Pair .MINIMUM LIQUIDITY{) (UniswapV2Router .s0l#249) is not in mixedCase

Variable UniswapV2Router82.WETH (UniswapV2Router02.sol#384) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:

variable IUniswapV2Routerel .addLiquidity{address,address ,uint256,uint256,uint256,uint256,address ,uint256) .amountADes ired (Unisw
pV2Routert 1# is too similar to ILHIS\GPJgRDUtQI“l aijlquljltv'ajjlgss,ajjlﬂss ulnt‘._,ulnt‘EC,ulntZEC,uintEE@,address,u
nt256) .amountBhDes ired (UniswapV2Router@2.sol#37)

Variable Uniswap outere2.addLiguidit jjlQSS,ujdreSS,UIHTEEC,ulﬁtEEC,ulHt‘EC,ulht‘ 6,address ,uint256).amountADes ired (Uniswa
V2Router82.sol#432) is too similar to IUniswapV2Routerfl.addlLiquidity(address,address u1n145E,ulnt45E,u1h14,,,ulhTLEE,ajjléss u
nt256) .amountBles ired (UniswapV2Router .sol#3

ate and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ii 1 er

ol analyzed {1 contracts with

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

UniswapV2ERC20.sol
Security

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally static analysis
modules do not parse inline Assembly, this can lead to wrong analysis results.

more

Pos: 39:8:

Block timestamp:

Use of "block.timestamp”: "blocktimestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 115:28:

Gas costs:

Gas requirement of function UniswapV2ERC20.permit is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 106:4:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 124:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since

those yield rational constants.
Pos: 15:26:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

UniswapV2Factory.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

UniswapV2Pair._mintFee(uint112,uint112): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.

Pos: 276:4:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

UniswapV2Factory.createPair(address,address): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 411:4:

Gas costs:

Gas requirement of function UniswapV2Factory.createPair is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your

functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 411:4:

ERC
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more

Pos: 45:4:

Miscellaneous

Constant/View/Pure functions:

UniswapV2Factory.pairCodeHash() : Is constant but potentially should not be. Note: Modifiers are
currently not considered by this static analysis.

more

Pos: 407:4:

Similar variable names:

UniswapV2Factory.createPair(address,address) : Variables have very similar names "token0" and
"tokenB". Note: Modifiers are currently not considered by this static analysis.
Pos: 423:24:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 434:8:

UniswapV2Pair.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
UniswapV2Pair._mintFee(uint112,uint112): Could potentially lead to re-entrancy vulnerability.
Note: Modifiers are currently not considered by this static analysis.

more

Pos: 277:4:

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose" the block timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 263:39:

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's interface.
more

Pos: 233:44:

Gas & Economy

Gas costs:

Gas requirement of function UniswapV2Pair.sync is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 386:4:

ERC
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 46:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Miscellaneous

Similar variable names:

UniswapV2Pair.getReserves() : Variables have very similar names "reserve(0" and "_reservel”.
Note: Modifiers are currently not considered by this static analysis.
Pos: 227:20:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 348:8:

Data truncated:

Division of integer values vields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 333:18:

UniswapV2Router02.sol

Block timestamp:

Use of "block.timestamp™: "block.timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 387:28:

Gas costs:

Gas regquirement of function UniswapV2Router02.getAmountsOut is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

storage)
Pos: 795:4:

Gas costs:

Gas requirement of function UniswapV2Router02.getAmountsin is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 805:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 690:8:

ERC
ERC20:

ERC20 contract's "decimals” function should have "uint8" as return type
more
Pos: 190:4:

Miscellaneous

Similar variable names:

UniswapV2Router(02.addLiquidity (address,address,uint256,uint256,uint256,uint256,address,uint256)
: Variables have very similar names "amountAMin" and "amountBMin". Note: Modifiers are

currently not considered by this static analysis.
Pos: 439:103:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance {apart from a bug in
yvour code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 486:8:

Multicall.sol

Security

Block timestamp:

Use of "block.timestamp™: "block timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 35:20:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low level calls:

Use of "call"™: should be avoided whenever possible. It can lead to unexpected behavior if return
value is not handled properly. Please use Direct Calls via specifying the called contract's interface.

Pos: 19:47:

Block hash:

Use of "blockhash": "blockhash(uint blockNumber)" is used to access the last 256 block hashes. A
miner computes the block hash by "summing up" the information in the current block mined. By
"summing up" the information cleverly, a miner can try to influence the outcome of a transaction in
the current block. This is especially easy if there are only a small number of equally likely
outcomes.

Pos: 32:20:

Gas & Economy

Gas costs:

Gas requirement of function Multicall.aggregate is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 15:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 18:8:

Miscellaneous

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 20:12:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

UniswapV2ERC20.sol

UniswapV2ERC20.s0l1:3:1: Error: Compiler version =0.6.12 does not
satisfy the r semver requirement
UniswapV2ERC20.s0l:7:35: Error: Use double quotes for string literals
UniswapV2ERC20.s01:11:35: Error: Use double quotes for string
literals
UniswapV2ERC20.s01:15:49: Error: Use double quotes for string
literals
UniswapV2ERC20.s01:22:28: Error: Constant name must be in capitalized
SNAKE CASE
UniswapV2ERC20.s01:22:35: Error: Use double quotes for string
literals
UniswapV2ERC20.s01:23:28: Error: Constant name must be in capitalized
SNAKE CASE

.s01:23:37: Error: Use double quotes for string

.501:24:27: Error: Constant name must be in capitalized
SNAKE CASE
UniswapV2ERC20.s501:29:20: Error: Variable name must be in mixedCase
UniswapV2ERC20.s01:39:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
UniswapV2ERC20.s01:44:27: Error: Use double quotes for string
literals
UniswapV2ERC20.s01:46:33: Error: Use double quotes for string
literals
UniswapV2ERC20.s01:115:29: Error: Avoid to make time-based decisions
in your business logic
UniswapV2ERC20.s01:115:46: Error: Use double quotes for string
literals
UniswapV2ERC20.s01:118:17: Error: Use double quotes for string
literals
UniswapV2ERC20.s01:124:78: Error: Use double quotes for string
literals

UniswapV2Factory.sol

UniswapV2Factory.sol:3:1: Error: Compiler version =0.6.12 does not
satisfy the r semver requirement

UniswapV2Factory.sol:26:5: Error: Explicitly mark visibility of state
UniswapV2Factory.sol:76:35: Error: Use double quotes for string
literals

UniswapV2Factory.sol:80:35: Error: Use double quotes for string
literals

UniswapV2Factory.sol:84:49: Error: Use double quotes for string
literals

UniswapV2Factory.so0l:91:28: Error: Constant name must be in
capitalized SNAKE CASE

UniswapV2Factory.sol:91:35: Error: Use double quotes for string

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

:28: : Constant name must be in
capitalized SNAKE CASE
UniswapV2Factory.sol:92:37: : Use double quotes for string
literals
UniswapV2Factory.sol:93:27: : Constant name must be in
capitalized SNAKE CASE
UniswapV2Factory.sol:98:20: : Variable name must be in mixedCase
UniswapV2Factory.sol:108:9: : Avoid using inline assembly. It is

UniswapV2Pair.sol

.s0l1:3:1: Error: Compiler version =0.6.12 does not
semver requirement

.s01:27:5: Error: Explicitly mark visibility of state
.s01:77:35: Error: Use double quotes for string literals
.501:81:35: Error: Use double quotes for string literals
.501:85:49: Error: Use double quotes for string literals
.501:92:28: Error: Constant name must be in capitalized

.501:92:35: Error: Use double quotes for string literals
.s01:93:28: Error: Constant name must be in capitalized

.501:93:37: Error: Use double quotes for string literals
.501:94:27: Error: Constant name must be in capitalized

.501:99:20: Error: Variable name must be in mixedCase
.501:109:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
UniswapV2Pair.sol:114:27: Error: Use double quotes for string
literals
UniswapV2Pair.sol:116:33: Error: Use double quotes for string
literals
UniswapV2Pair.so0l:185:29: Error: Avoid to make time-based decisions
in your business logic
UniswapV2Pair.so0l:185:46: Error: Use double quotes for string

.501:188:17: Error: Use double quotes for string
.501:194:78: Error: Use double quotes for string
.501:204:63: Error: Use double quotes for string
.501:220:32: Error: Use double quotes for string

.501:233:45: Error: Avoid using low level calls.
.s01:234:76: Error: Use double quotes for string

:255:40: Error: Use double quotes for string
:262:69: Error: Use double quotes for string

:263:40: Error: Avold to make time-based decisions

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

in your business log
UniswapV2Pair.sol: :32: Error: double quotes r string
literals
UniswapV2Pair.sol:334:45: Error: se double quotes string
literals
UniswapV2Palr.so0l:348:51: Error: Use double quotes string
literals
UniswapV2Pair. :350: : Error: > double quotes for string
literals
UniswapV2Pair. : :49: Error: Use double quotes for string
literals

E : e double quotes for string

UniswapV2Pair.s : : 4: : Use double quotes
literals

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

UniswapV2Router02.sol

UniswapV2Router02.s0l:2:1:

Error:

satisfy the r semver requirement

so0l:8:45:
sol:9:76:

UniswapV2Router02.
UniswapV2Router02.
literals
UniswapV2Router02.
UniswapV2Router(02.
literals
UniswapV2Router(02.
UniswapV2Router(02.
literals

14:45:;
15276¢

sol:
sol:

31s5¢
173:35:

sol:
sol:

e l77:535z3

:181:49:

:231:5:
:232:5:

:249:5:
mixedCase
UniswapV2Router(02.
literals
UniswapV2Router02.
literals
UniswapV2Router02.
literals

52735353

:275:39:

sol:354:35:

.s501:369:35:

.501:384:39:

mixedCase
UniswapV2Router(02.

s0l1:387:29:

decisions in your

UniswapV2Router(02.

literals

UniswapV2Router(02.

mixedCase

Multicall.sol

Multicall.sol:2:1:

Error:
Error:

Error:
Error:

Error:
Error:

Frror:

Frror:

Error:

Error:

Error:

Error:

Frror:

Frror:

FError:

Error:

Error:

business logic

sol:

sol:

.sol:

Error:

387:46:

391:35:

419:55:

the r semver requirement

Multicall.so0l:19:48:
Multicall.sol:35:21:

your business logic

Software analysis result:

Frror:
EFrror:

Error:

Error:

Frror:

Use double quotes
Use double quotes
Use double quotes
Function name must
Function name must
Function name must

Use double quotes

Use double quotes

Use double quotes

Use double quotes

Compiler version =0.6.12 does not

Avoid using low level calls.
Use double quotes for string

Avoid using low level calls.
Use double quotes for string

Function name must be in mixedCase

for string
for string
for string
be in
be in
be in
for string
for string
for string

for string

Variable name must be in

Avoid to make time-based

Use double quotes for string
Variable name must be in

Use double quotes for string

Compiler version >=0.5.0 does not satisfy

Avoid using low level calls.
Avoid to make time-based decisions in

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should

be disclosed to third party without prior written permi

ion of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

