@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Ansca Protocols
Website: https://ansca.io
Platform: Ethereum
Language: Solidity

Date: May 3rd, 2022

https://ansca.io

Table of contents

Introduction

... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 15
(@ 0] 1Y/ =1 1 T To [o] 0T) 16
DISCIAIMEIS ... e 18
Appendix
o Code FIoW Diagramououoiiii s 19
o Shther RESUIS LOGuiiiiii e 21
e Solidity staticanalysis ... 23
® SOININt LiNtEr oo 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Ansca team to perform the Security audit of the
Ansca Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 3rd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

e Ansca Protocol is Safe, Autonomous and Decentralized Peer-to-Peer DeFi
Protocols.

e The Ansca contract inherits the IERC20, Strings, IERC721, ERC721Holder,
IERC1155, ERC1155Holder, IERC165 standard smart contracts from the
OpenZeppelin library.

e These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for
Ansca Protocol Smart Contracts
Platform Ethereum / Solidity
File 1 ACE.sol
File 1 MD5 Hash 97C6880E8784EC9AOB5A5B025EFOB8BE

Updated File 1 MD5 Hash | 716E770C4D095C16B7B6D376BAA9772F

File 2 ANE.sol

File 2 MD5 Hash 322DD98FEOE435864A98B9E001380B10

Updated File 2 MD5 Hash | 8DE47B3F378EFC47C04DDB7BA10ED9DB

Audit Date May 3rd, 2022

Revise Audit Date May 31st, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 ACE.sol YES, This is valid.
e FEE:0.75%
e Max Fee: 1%
e ACE has functions like: getAddressReputation,

createEscrow, cancelEscrow, etc.

File 2 ANE.sol YES, This is valid.
e FEE:0.75%
e Max Fee: 1%
e ANE has functions like: createEscrow,

cancelEscrow, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 1 low and some very low level issues.

All the issues have been fixed / acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Ansca Protocol are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Ansca Protocol.

The Ansca team has not provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given an Ansca Protocol smart contract code in the form of a File. The hash of

that code is mentioned above in the table.
As mentioned above, code parts are well commented. So it is easy to quickly understand
the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website https://ansca.io which provided rich

information about the project architecture.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://ansca.io

AS-IS overview

ACE.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | getEscrowByld external Passed No Issue
3 | getAddressReputation external Passed No Issue
4 | escrowWentWell external Passed No Issue
5 | addresslsinvolved external Passed No Issue
6 [createEscrow external Passed No Issue
7 | getAllEscrowsForSender external Passed No Issue
8 [proposeAmountDiscount external Passed No Issue
9 [withdraw external Passed No Issue

changeHandler

10 | cancelEscrow external Passed No Issue
11 | proposeNewDeliveryTime external Passed No Issue
12 | deposit external Passed No Issue
13 [nativeDepositinternal internal Passed No Issue
14 | depositinternal internal Passed No Issue
15 | preDeposit internal Passed No Issue
16 | acceptNewDeliveryTime external Passed No Issue
17 | lock external Passed No Issue
18 | validateEscrow external Passed No Issue
19 | changeFeeCollectorAddress | external Passed No Issue
20 | changeFee external access by owner No Issue
21 | pause external Passed No Issue
22 | isBuyerParty internal Passed No Issue
23 | isSellerParty internal Passed No Issue
24 | payParties internal Passed No Issue
25 | payParty internal Passed No Issue
26 | startEscrow internal Passed No Issue
27 | updateAction internal Passed No Issue
28 | emitACEEvent internal Passed No Issue
29 | emitCompleteEvent internal Passed No Issue
30 | isInOrGoingToBeOngoing internal Passed No Issue
31 | isInOrGoingToBeDispute internal Passed No Issue
32 [isInOrGoingToBeComplete internal Passed No Issue

ANE.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [onERC1155Received write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

3 | onERC1155BatchReceived write Passed No Issue
4 | escrowWentWell external Passed No Issue
5 | addresslsinvolved external Passed No Issue
6 | getAllEscrowsForSender external Passed No Issue
7 | getNftldsByNftEscrowld external Passed No Issue
8 | getAddressesByNftEscrowld external Passed No Issue
9 [getNftQuantitiesByNftEscrowld external Passed No Issue
10 | getNftTypesByNftEscrowld external Passed No Issue
11 | getEscrowByld external Passed No Issue
12 | createEscrow external Passed No Issue
13 | cancelEscrow external Passed No Issue
14 | buyNft external access by owner No Issue
15 | changeFeeCollectorAddress external access by owner No Issue
16 | changeFee external Passed No Issue
17 | pause external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity
No High severity vulnerabilities were found.

Medium

(1) Function input parameters lack of check: ACE.sol, ANE.sol

changeFee(_fee)

(nsz.sender == owner);

Owner can set fees to 100%. Hence the buyer’s or seller’s receiving the amount gets 0.

Resolution: We suggest setting a minimum and maximum limit for fees.
Status: Fixed

Low

(1) Function input parameters lack of check: ACE.sol
Variable validation is not performed in below functions :

e createEscrow = _tokenAddress

Resolution: We advise to put validation : int type variables should not be empty and > 0 &

address type variables should not be address(0).
Status: Fixed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Critical operation lacks event log:

Missing event log for:
ACE.sol

createEscrow
proposeAmountDiscount
withdraw

cancelEscrow
proposeNewDeliveryTime
deposit
acceptNewDeliveryTime

validateEscrow

ANE.sol

buyNft
cancelEscrow

createEscrow

Resolution: Write an event log for listed events.
Status: Fixed

(2) Ambiguous Error Message:
ACE.sol

proposeNewDeliveryTime (

AnscaEscrow localAnsc
(.sender == localAnscaEsc
(_deli ime > localAnscaE

isInOrGoingToBeOngoing(localAnscaEscr

updateAction(localAnscaEscrow, .sender, Action.NEW DELIVERY TIME REQUEST, deliveryTime, ""

anscaEscrowlist[id] = localAnscaEscrow;

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ANE.sol
buyNft (_id)

AnscaEscrow localAnscaEscrow = anscafbscrowlList|[id];

(localAnscaEscrow.open, “30");

(.value >= localAnscaEscrow.price, "31");

In all the functions , The mentioned error messages do not explain exactly the error of the

operation.

Resolution: As error messages are intended to notify users about failing conditions, they
should provide enough information so that appropriate corrections can be made to interact
with the system.

Status: Acknowledged.

Comments : To reduce the gas fee and size of the code, short error message codes have

been used.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e changeFee: ANE owner can update fees.
e changeFee: ACE owner can update fees.
e pause: ANE owner can set pause status.
e changeFeeCollectorAddress: ANE owner can change fee collector address.
e pause: ACE owner can set pause status.

e changeFeeCollectorAddress: ACE owner can change fee collector address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of files. And we have used all possible tests
based on given objects as files. We had observed some issues in the smart contracts. All
the issues have been fixed / acknowledged. So, the smart contracts are ready for the

mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Ansca Protocol

ACE Diagram

@ Strings @ IERC20

Ok 16 HEX SYMBOLS
ytes @ Qbalance0f()

& QtaStringl) @ transfer()
© QtoHexString() @ transferFrom()

@ ACE

O Uint256 counter

< bytes32=>AnscaFserow anscaFscrowlist
< address==AnscaReputation reputation

< address==null ownerEscrowMapping

O uint256 FEE

O uint256 daylinSecond

O hool paused

< address owner

< address feeCollector Address

@ _ constructor__ ()

@ QgetEscrowByid()

@ O getAddressReputation()
@ QescrowWertWel!)

@ Qaddressisinvalved()

@ @createEscrow()

© ACED @ O getAlEscrowsForSender()
@ proposeAmourtDiscount()
< address owner @ withdraw()
< address buyer @ changeHandler()
¥ address seller @ cancelEscrow()

@ proposeMewDeliveryTime()
@ @depost()

< nativeDepostinternal])

< depositinternall)

& preDeposit()

@ acceptMewDeliveryTime()

@ lock()

D validateEscrow)

@ changeFeeColector Address()
@ changeFee()

@ pausel)

< QisBuyerParty()

< gisSelerParty()

< payParties()

< payParty()

< startEscrow()

< updateAction()

< emitACEEvent()

< emitCompleteEvent()

2 QisinCrGoingToBeCngoingy)
< QjsinOrGaingToBeDisputel)
< QiginOrGoingToBeComplete()

@ &__constructor_()
@ setBuyer()
@ setSeller()
@ withdraw()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ANE Diagram

@ Strings

@ ANE

ERCV21Holder
ERC1155Holder

O uint256 counter

< bytes32==AnscaFscrow anscaEscrowlist

<+ address==null ownerEscrowMapping
O wint256 FEE

C ool paused

“* address owner

< address feeCollector Address

O bytes16 _HEX_SYMBOLS

< QtoStringl)
< QioHexString()

(@) iercr2t

IERC163

@ Qbalancedf()

@ QownerOfi)

@ safeTransferFromi)
@ transferFromi)

@ approvel)

@ setApprovalFor Al
@ Qgetipproved()

© QisApprovedForAlQ)

-

2 _ constructor__ ()

@ Qescrow\NentWell()

@ Qaddresslsinvolved()

@ QgetAllEscrowsForSender()

@ G gethftidsByMNAEscrowld()

@ QgetAddressesByNftEscrowld()
@ G getMftQuartitiesByNAEscrowld()
@ QoetMNATypesByMNAEscrowld()
@ QgetEscrowByld()

@ createEscrow()

@ cancelEscrow()

@ @huyNf()

@ changeFeeCollector Address()

@ changeFee()

@ pausel)

@ ERC721Holder

@ ERC1155Holder

IERCT721Receiver

ERC1155Receiver

@ onERCT21Received()

© onERC1155Received])
@ onERC1155BatchReceived()

- @ERCHSSRECEiver
@ IERCT21Recsiver
ERC165
® onERCT21Received() [ERC1T55Recever
@ Qsupportsinterface)

T

@ IERC1155

IERC163

@ Qbalancedf()

@ QbalancedfBatch()

@ setApprovalForAll)

@ QisApprovedFor Al
@ safeTransferFromi)

@ safeBatchTransferFrom()

@ ERC165

IERGT1ES

@ Q.supportsinterface()

-

&

E I| |
@ IERCA65

@ Qsupportsinterface()

Email: audit@EtherAuthority.io

i

@ IERC1155Receiver

IERC163

@ onERC1155Received])
2@ onERC1155BatchReceived()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Slither Results Log

Slither log >> ACE.sol

INFO:Detectors:
ACED.constructor(a
ACED.constructor(a
ACE.constructor(ad
ACE . changewithdr
i _.-;'Litl er -\1|"L Dete ctor-Documentation#miss ing-zero-address-val idation

INFD Detectors:

ncy in ACE.cre ct Escrow(bytes32, ,address,uint256,uint32,byte ,bool,address) {ACE.sol#328-379):

External

- .-|,_s1tI|t»\|.=1 {localAnscaEscr {ACE.sol#37

- success rypto. g rom{msg.se (ow.amountMinusFee) (A

o.transferFrom{msg.sender ,withdrawlAddress,localAnscaEscrow.amount - localAnscaEscrow.amountMi

3 es t 1A ss). .cr“-.ut - 1-: AnscaEscrow.amountMin ‘HCE sol#57
State variables written after the call(s):

- counter ++ [ACE.sol#

: https github ic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2

) {ACE.sol#328-379):

ositContract,localAnscaEscrow.amountMinusFee) (A

,localAnscaEscrow.amount - localAnscaEscrow.amountMi

,uintg({_action
Action.CREATE)
ce rabilities-3
INFD Detectors
Mentwell((ACE. #) uses timestamp for comparisons

! anscaEscrowList[_id].dispute {ACE.sol#3
) uses timestamp for comparisons

3 ess (ACE.sol#310))
:) uses tlr’-stcr|. for comparisons

INFO:Detectors:
Reentrancy in ACE.createEscrow
External calls:
- nativeDe :sitIrterrallﬁ1-:-:&1Ars aEs¢
ress(with .|c\1d")
bles written after the -cllls
(ACE.sol#
after th
i (= s Ansc z , ction.CREATE) (ACE.sol#3
Reference: https://g .com/c c/slither/wiki/Detec cume Lon#ree v erabilities-4
INFO:Detectors:
i ACE .getEscrowById(bytes32).resultPartl (ACE. :) is too similar to ACE.ge crowById(bytes32).resultPart2
ACE .getEsc (8532).resultPartl (ACE.sol#) is teo similar te ACE.ge crowByI 0s32).resultPart3
getEscrowById{bytes32).resultPartl {ACE.sols) is too similar to ACE.ge crowById({bytes32).resultPart4 (A
getEscrol (byte).resultPartl (ACE. #) is o similar ACE . ge crowBy = .resultPart5s
getEscrowById(bytes32).resultPart2 (ACE.sol#192) is similar ACE.ge crowById(bytes32).resultPart3
getEscrowById(bytes32).resultPart2 [ACE. #192) 1is similar ACE.qge crowById(2532). resultPartd (A
getEscrowById{byte resultPart2 (ACE.sol#192) is similar ACE. ge crowBy 2 esultParts
getEscrowById(byte).resultPart3 (ACE. 7) is similar ACE.qge crowBy yte .resultPartd (A
getEscrowById(bytes32).resultPart3 (ACE. #) is similar ACE.qge crowBy ytes32).resultParts
ACE.getEscrowById(bytes32).resultPartd (ACE. #) is similar to ACE.ge crowBy z .resultPart5s
github.

ic
INFO: 5l ither:ACE.sol analyzed (4 contracts \-n.th ?5 detectors), 123 result(s) 'Found
INFO:51lither:Use https: 1 detect b

; is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> ANE.sol

lic-f t
found

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Security

Block timestamp:

Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome of
a transaction in the mined block.

more

Pos: 344:39:

Block timestamp:

Use of "block.timestamp”: "block.timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome of
a transaction in the mined block.

more

Pos: 770:22:

Gas & Economy

Gas costs:

Gas requirement of function ACE.validateEscrow is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 645:4:

Gas costs:

Gas requirement of function ACE.acceptNewDeliveryTime is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your

functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 606:4:
Miscellaneous

Constant/View/Pure functions:

ACE.isInOrGoing ToBeDispute(struct ACE.AnscaEscrow,bool) : Is constant but potentially should not
be.

more

Pos: 741:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

ACE.updateAction(struct ACE.AnscaEscrow,address,enum ACE.Action,uint32,bytes32) : Variables

have very similar names "_nbr" and "_str".
Pos: 713:35:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 520:8:

Guard conditions:

Use "assert{x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
yvour code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: b36:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants.

Pos: 498:37:

Security
Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in
ANE.createEscrow(bytes32,uint256[],address[],uint256[],uint256): Could potentially
lead to re-entrancy vulnerability.

more

Pos: b47:4:

Block timestamp:

Use of "block.timestamp™: "block.timestamp" can be influenced by miners to a certain
degree. That means that a miner can "choose" the block.timestamp, to a certain degree,
to change the outcome of a transaction in the mined block.

more

Pos: 568:31:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function ANE.getNft TypesByNftEscrowld is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage (this

includes clearing or copying arrays in storage)
Pos: 515:4:

This on local calls:

Use of "this" for local functions: Never use "this" to call functions in the same contract, it
only consumes more gas than normal local calls.

more

Pos: 439:15:

Miscellaneous

Constant/View/Pure functions:

ANE.getEscrowByld(bytes32) : Is constant but potentially should not be.
more
Pos: 521:4:

Similar variable names:

ANE.pause(bool) : Variables have very similar names "paused” and "_pause”.
Pos: 673:8:

Guard conditions:

Use "assert(x)" If you never ever want x to be false, not in any circumstance (apart from

a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing
external component.

more
Pos: 667:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/100=0
instead of 0.1 since the result is an integer again. This does not hold for division of
(only) Lliteral values since those yield rational constants.

Pos: 647:22:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

ACE.sol

ACE.sol:3:1: Error: Compiler version 70.8.4 does not satisfy the r
semver requirement

ACE.sol:77:5: Error: Explicitly mark visibility of state
ACE.sol:78:5: Error: Explicitly mark visibility of state
ACE.s0l:79:5: Error: Explicitly mark visibility of state
ACE.s0l:80:5: Error: Explicitly mark visibility of state
ACE.s0l:81:5: Error: Explicitly mark visibility of state
ACE.s0l1:83:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
ACE.s01:89:32: Error: Code contains empty blocks
ACE.s0l1:119:5: Error: Explicitly mark visibility of state
ACE.s0l:121:5: Error: Explicitly mark visibility of state
ACE.so0l:123:5: Error: Explicitly mark visibility of state
ACE.s0l:125:20: Error: Variable name must be in mixedCase
ACE.s0l:130:5: Error: Explicitly mark visibility of state
ACE.s0l:132:5: Error: Explicitly mark visibility of state
ACE.s0l1:180:5: Error: Explicitly mark visibility in function
ignoreConstructors to true if using solidity >=0.7.0)
ACE.s0l1:344:40: Error: Avoid to make time-based decisions in
business logic

ACE.s0l1:350:45: Error: Avoid to make time-based decisions
business logic

ACE.s0l:356:50: Error: Avoid to make time-based decisions
business logic

ACE.s0l:360:32: Error: Avoid to make time-based decisions
business logic

ACE.so0l:427:18: Error: Avoid to make time-based decisions
business logic

ACE.s0l:432:18: Error: Avoid to make time-based decisions
business logic

ACE.so0l:464:27: Error: Avoilid to make time-based decisions
business logic

ACE.s0l:632:46: Error: Avoid to make time-based decisions
business logic

ACE.s0l:636:48: Error: Avoid to make time-based decisions
business logic

ACE.so0l:684:24: Error: Avoid to make time-based decisions
business logic

ACE.so0l:703:24: Error: Avoid to make time-based decisions
business logic

ACE.sol:753:12: Error: Avoid to make time-based decisions
business logic

ACE.so0l:770:23: Error: Avoid to make time-based decisions
business logic

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ANE.sol

emver requirement

:448:5: Error: Explicitly mark visibility of state
:450:5: Error: Explicitly mark visibility of state
:453:20: Error: Variable name must be in mixedCase

:457:5: Error: Explicitly mark visibility of state

Error: Explicitly mark visibility of state
:484:5: Error: Explicitly mark visibility in function
onstructors to true if using solidity >=0.7.0)
Error: Avoid to make time-based decisions in

Error: Use double quotes for string literals

ANE.sol:3:1: Error: Compiler version 70.8.4 does not satisfy

your

Overall Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

