
Project: Akiba Finance
Website: http://akiba.finance
Platform: Kava Chain
Language: Solidity
Date: January 30th, 2023

http://akiba.finance

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....………………………………………………………………….10

Technical Quick Stats …..……………………………………………………………………… 11

Code Quality ……………………………………………………………………………………. 12

Documentation ………………………………………………………………………………….. 12

Use of Dependencies …………………………………………………………………………… 12

AS-IS overview ………………………………………………………………………………….. 13

Severity Definitions ……………………………………………………………………………... 21

Audit Findings …………………………………………………………………………………… 22

Conclusion ………………………………………………………………………………………. 27

Our Methodology ………………………………………………………………………………... 28

Disclaimers ………………………………………………………………………………………. 30

Appendix

● Code Flow Diagram ……………………………………………………………………... 31

● Slither Results Log ………………………………………………………………………. 50

● Solidity static analysis ….……………………………………………………………….. 57

● Solhint Linter …………………………………………………………………….……….. 73

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Akiba Finance to perform the Security audit of the Akiba
Finance Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on January 30th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Akiba Finance is a project that aims to create a synthetic protocol and support a

synthetic asset market. The goal of the protocol is to create a synthesis of tokens in

the KAVA network, as well as assets that are not yet traded on the network.

● Akiba Finance presents a partially collateralized design in which the protocol's

synths are collateralized by the underlying asset as well as Akiba's own token.

● $KAWAII is a next-generation KAVA reward token on the KAVA ecosystem.

● 2% of every transaction made with the $KAWAII tokens goes back to holders of

$KAWAII in KAVA rewards.

● Akiba Finance Contracts have functions like mint, redeem, recollateralize,

addLiquidity, add, set, withdraw, stake, setRewarder, getYTokenPrice,

maxTotalSupply, etc.

● The Akiba Finance contract inherits the ERC20, SafeERC20, Ownable,

ReentrancyGuard, Address, IUniswapV2Router02, SafeMath, Math, Initializable,

IERC20, IUniswapV2Pair, ERC20Burnable standard smart contracts from the

OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Akiba Finance Protocol Smart Contracts

Platform Kava Chain / Solidity

File 1 Pool.sol

File 1 MD5 Hash 5A2A00BB08B8E6D864762B7923234D83

File 2 SwapStrategyPOL.sol

File 2 MD5 Hash 3AE7E63D48701C411ABB283789C1437F

File 3 DaoChef.sol

File 3 MD5 Hash E12C4E0BDCB405DD0DB61CCF7173ED06

File 4 DaoStaking.sol

File 4 MD5 Hash 420E6CBD2A617CF1A889C9FB3748A035

File 5 DaoZapMMSwap.sol

File 5 MD5 Hash 8C94DD4015FAD718D7A77F614090C88E

File 6 NFTController.sol

File 6 MD5 Hash 7B517FFAE5E28C8D3B7020747FFA8659

File 7 DevFund.sol

File 7 MD5 Hash 421922B4D673537DDF2B3670B3DDF2D0

File 8 EcosystemFund.sol

File 8 MD5 Hash AB52539B109A86609DB6A08241470A1E

File 9 Fund.sol

File 9 MD5 Hash 47370A0301A3BBA40747C7FFD8A18E6B

File 10 Reserve.sol

File 10 MD5 Hash FCF4CA4DFA100BEB80A7618F182D28A6

File 11 MasterOracle.sol

File 11 MD5 Hash 26FFB8A6EB84AABF384A830DB4572C0A

File 12 UniswapPairOracle.sol

File 12 MD5 Hash 37801A23DE6F4571ADD278A4A062C1D5

File 13 XToken.sol

File 13 MD5 Hash 83382FC411F2E4462B30C55D6F62A2DD

File 14 YToken.sol

File 14 MD5 Hash FFA9BDAB9AEE9D07DB46CB3A23A34696

File 15 AKIBA.sol

File 15 MD5 Hash C57DBC87D69DA93EB9C9F0C1764186C5

File 16 KAVAX.sol

File 16 MD5 Hash FF29BA8EC16693A3F4D4D5CB44691963

File 17 DaoTreasury.sol

File 17 MD5 Hash 6F7D4440E3559A369F54292716F4922C

File 18 StratRecollateralize.sol

File 18 MD5 Hash C02B3F40E26D074FB153BAC73AD35F92

File 19 StratReduceReserveLP.sol

File 19 MD5 Hash 16E6A30B5CAEDE87A5F4A5BFF827D22F

Audit Date January 30th,2023

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Pool.sol
● Refresh Cooldown: 1 hour

● Ratio StepUp: 0.2%

● Ratio StepDown: 0.1%

● Price Target: 1

● Price Band: 0.004

● YToken Slippage: 20%

● Redemption Fee: 0.5%

● Redemption Fee Maximum: 0.9%

● Minting Fee: 0.5%

● Minting Fee Maximum:0.5%

YES, This is valid.
Owner authorized wallet can set
some percentage value and we
suggest handling the private key
of that wallet securely.

File 2 SwapStrategyPOL.sol
● Swap Slippage: 20%

YES, This is valid.
Owner authorized wallet can set
some percentage value and we
suggest handling the private key
of that wallet securely.

File 3 DaoChef.sol
● Maximum Number Of Pools: 36

● Maximum Reward: 10 token per second

YES, This is valid.

File 4 DaoStaking.sol
● Grouped Duration: 1 day

● Rewards Duration: 1 week

● Lock Duration: 4 weeks

● Team Rewards: 20%

● Maximum Team Rewards: 20%

YES, This is valid.

File 5 DaoZapMMSwap.sol
● DaoZap is a ZapperFi's simplified version

of zapper contract which will:

YES, This is valid.

1. use ETH to swap to target tokens.

2. make LP between ETH and target token.

3. add into DaoChef farm.

File 6 NFTController.sol
● Default Boost Rate: 1%

YES, This is valid.

File 7 Fund.sol
● Owner can transfer amounts.

YES, This is valid.

File 8 DevFund.sol
● Allocation: 10%

● Vesting Duration: 2 Years

YES, This is valid.
Owner authorized wallet can set
some percentage value and we
suggest handling the private key
of that wallet securely.

File 9 Reserve.sol
● Owner can set the pool address.

● Owner can remove the pool address.

YES, This is valid.

File 10 EcosystemFund.sol
● Allocation: 20%

● Vesting Duration: 3 Years

YES, This is valid.

File 11 MasterOracle.sol
● MasterOracle has functions like:

getXTokenPrice, getYTokenPrice,

getYTokenTWAP, etc.

YES, This is valid.

File 12 UniswapPairOracle.sol
● Period: 60-minute TWAP (Time-Weighted

Average Price)

● Maximum Period: 48 Hours

● Minimum Period: 10 Minutes

● Leniency: 12 Hours

YES, This is valid.

File 13 XToken.sol
● Owner can set the minter address for

XToken.

● Owner can remove the minter address

from XToken.

● Owner can Mint new XToken.

YES, This is valid.

File 14 YToken.sol
● The YToken contract inherits the

ERC20Burnable standard smart contracts

from the OpenZeppelin library.

YES, This is valid.

File 15 AKIBA.sol
● Total Supply: 5 Million

● Owner can set openTrading's true status.

YES, This is valid.

File 16 KAVAX.sol
● Genesis Supply: 100

YES, This is valid.

File 17 DaoTreasury.sol
● DaoTreasuryis to store the reserve of

Akiba Protocol.

● These contracts will have a whitelist of

strategy contracts which can request

funding from the Reserve.

● These strategy contracts can be used to

Allocate fee, Convert reserve to Protocol

Owned Liquidity, Recollateralize, etc

YES, This is valid.

File 18 StratRecollateralize.sol
● Owner can recollateralize the minting

pool.

YES, This is valid.

File 19 StratReduceReserveLP.sol
● Owner can remove liquidity, buy back

YToken and burn.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 19 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Akiba Finance Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Akiba Finance Protocol.

The Akiba Finance team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Akiba Finance Protocol smart contract code in the form of a file. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website http://akiba.finance which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

http://akiba.finance

AS-IS overview

Pool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 nonReentrant modifier Passed No Issue
8 info external Passed No Issue
9 usableCollateralBalance read Passed No Issue

10 calcMint read Passed No Issue
11 calcRedeem read Passed No Issue
12 calcExcessCollateralBala

nce
read Passed No Issue

13 refreshCollateralRatio read Passed No Issue
14 mint external Passed No Issue
15 redeem external Passed No Issue
16 collect external Passed No Issue
17 recollateralize external Passed No Issue
18 checkPriceFluctuation internal Passed No Issue
19 toggle write access only Owner No Issue
20 setCollateralRatioOptions write access only Owner No Issue
21 toggleCollateralRatio write access only Owner No Issue
22 setFees write access only Owner No Issue
23 setMinCollateralRatio external access only Owner No Issue
24 reduceExcessCollateral external access only Owner No Issue
25 setSwapStrategy external access only Owner No Issue
26 setOracle external access only Owner No Issue
27 setYTokenSlippage external access only Owner No Issue
28 setTreasury external Function access

control lacks
management

Refer Audit
Findings

29 transferToTreasury internal Passed No Issue

SwapStrategyPOL.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue

3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 lpBalance read Passed No Issue
8 execute external Passed No Issue
9 swap internal Passed No Issue

10 addLiquidity internal Passed No Issue
11 cleanDust external access only Owner No Issue
12 changeSlippage external access only Owner No Issue
13 calculateSwapInAmount internal Passed No Issue

DaoChef.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 poolLength read Passed No Issue
8 pendingReward external Passed No Issue
9 updatePool write Passed No Issue

10 massUpdatePools write Passed No Issue
11 deposit write Passed No Issue
12 withdraw write Passed No Issue
13 harvest write Passed No Issue
14 withdrawAndHarvest write Passed No Issue
15 emergencyWithdraw write Passed No Issue
16 harvestAllRewards external Passed No Issue
17 checkPoolDuplicate internal Passed No Issue
18 add write access only Owner No Issue
19 set write access only Owner No Issue
20 setRewardPerSecond write access only Owner No Issue
21 setRewardMinter external Passed No Issue
22 getBoost read Passed No Issue
23 getSlots read Passed No Issue
24 getTokenIds read Passed No Issue
25 depositNFT write Passed No Issue
26 withdrawNFT write Passed No Issue
27 setNftController write access only Owner No Issue
28 setNftBoostRate write access only Owner No Issue

DaoStaking.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 addReward write Function input

parameters lack of
check

Refer Audit
Findings

8 approveRewardDistributor external Function input
parameters lack of

check

Refer Audit
Findings

9 _rewardPerToken internal Passed No Issue
10 _earned internal Passed No Issue
11 lastTimeRewardApplicable read Passed No Issue
12 rewardPerToken external Passed No Issue
13 getRewardForDuration external Passed No Issue
14 claimableRewards external Passed No Issue
15 totalBalance external Passed No Issue
16 unlockedBalance external Passed No Issue
17 earnedBalances external Passed No Issue
18 lockedBalances external Passed No Issue
19 withdrawableBalance read Passed No Issue
20 stake external Passed No Issue
21 mint external Passed No Issue
22 withdraw write Passed No Issue
23 getReward write Passed No Issue
24 emergencyWithdraw external Critical operation

lacks event log
Refer Audit

Findings
25 withdrawExpiredLocks external Critical operation

lacks event log
Refer Audit

Findings
26 _notifyReward internal Passed No Issue
27 notifyRewardAmount external Passed No Issue
28 recoverERC20 external access only Owner No Issue
29 updateReward modifier Passed No Issue
30 receive external Passed No Issue
31 setTeamWalletAddress external Passed No Issue
32 setTeamRewardPercent external Passed No Issue

DaoZapMMSwap.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 zap external Passed No Issue
8 receive external Passed No Issue
9 swap internal access only Owner No Issue

10 doSwapETH internal Passed No Issue
11 approveToken internal Passed No Issue
12 calculateSwapInAmount internal Passed No Issue
13 addZap external access only Owner No Issue
14 removeZap external access only Owner No Issue

NFTController.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 initialize write initializer No Issue
8 getBoostRate external Passed No Issue
9 setWhitelist external access only Owner No Issue

10 setDefaultBoostRate external access only Owner No Issue
11 setBoostRate external access only Owner No Issue

Fund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue

7 nonReentrant modifier Passed No Issue
8 initialize external initializer No Issue
9 allocation read Passed No Issue

10 vestingStart read Passed No Issue
11 vestingDuration read Passed No Issue
12 currentBalance read Passed No Issue
13 vestedBalance read Passed No Issue
14 claimable read Passed No Issue
15 transfer external access only Owner No Issue

DevFund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize external Passed No Issue
3 allocation read Passed No Issue
4 vestingStart read Passed No Issue
5 vestingDuration read Passed No Issue
6 currentBalance read Passed No Issue
7 vestedBalance read Passed No Issue
8 claimable read Passed No Issue
9 transfer external access only Owner No Issue

10 allocation write Passed No Issue
11 vestingStart write Passed No Issue
12 vestingDuration write Passed No Issue

Reserve.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 setRewarder external Passed No Issue
4 setPool external access only Owner No Issue
5 removePool external access only Owner No Issue
6 transfer external Passed No Issue

EcosystemFund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize external Passed No Issue
3 allocation read Passed No Issue

4 vestingStart read Passed No Issue
5 vestingDuration read Passed No Issue
6 currentBalance read Passed No Issue
7 vestedBalance read Passed No Issue
8 claimable read Passed No Issue
9 transfer external access only Owner No Issue

10 allocation write Passed No Issue
11 vestingStart write Passed No Issue
12 vestingDuration write Passed No Issue

MasterOracle.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 getXTokenPrice read Passed No Issue
8 getYTokenPrice read Passed No Issue
9 getXTokenTWAP read Passed No Issue

10 getYTokenTWAP read Passed No Issue

UniswapPairOracle.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 setPeriod external access only Owner No Issue
3 update external Passed No Issue
4 twap external Passed No Issue
5 spot external Passed No Issue
6 currentBlockTimestamp internal Passed No Issue
7 currentCumulativePrices internal Passed No Issue

XToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyMinter modifier Passed No Issue
3 setMinter external access only Owner No Issue
4 removeMinter external access only Owner No Issue

5 mint external access only Minter No Issue

YToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue

AKIBA.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 OpenTrade external Passed No Issue
3 includeToWhitelist write Passed No Issue
4 excludeFromWhitlist write Passed No Issue
5 _transfer write Passed No Issue

KAVAX.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 OpenTrade external Passed No Issue
3 includeToWhitelist write Passed No Issue
4 excludeFromWhitlist write Passed No Issue
5 _transfer internal Passed No Issue

StratRecollateralize.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 recollateralize external access only Owner No Issue
3 receive external Passed No Issue

StratReduceReserveLP.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 reduceReserve external access only Owner No Issue
8 swap internal Passed No Issue

DaoTreasury.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 balanceOf read Passed No Issue
8 requestFund external Passed No Issue
9 addStrategy external access only Owner No Issue

10 removeStrategy external access only Owner No Issue
11 allocateFee external access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log: DaoStaking.sol
Missing event log for:

1. withdrawExpiredLocks

2. emergencyWithdraw.

Resolution: Write an event log for listed events.

(2) Function input parameters lack of check: DaoStaking.sol
Variable validation is not performed in the functions below :

1. addReward

2. approveRewardDistributor.

Resolution: We advise to put validation like integer type variables should be greater than

0 and address type variables should not be address(0).

(3) Function access control lacks management: Pool.sol
The Treasury address is used to transfer fees. The treasury address can be set only once

but anyone can execute the setTreasury function.

Resolution: The owner has to make sure to set treasury before anyone sets it.

Status: Acknowledged.

Very Low / Informational / Best practices:

(1) SPDX license identifier Missing: MockTreasury.sol
SPDX license identifier not provided in source file.

Resolution: We suggest adding an SPDX license identifier.

(2) HardCoded address: WethUtils.sol

These addresses have been set to static addresses and cannot be changed after

deploying.

Resolution: We suggest that the deployer should confirm before deploying contracts.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

Pool.sol
● toggle: Owner can turn on / off minting and redemption.

● setCollateralRatioOptions: Owner can configure variables related to Collateral

Ratio.

● toggleCollateralRatio: Owner can pause or unpause collateral ratio updates.

● setFees: Owner can set the protocol fees.

● setMinCollateralRatio: Owner can set the minimum Collateral Ratio.

● reduceExcessCollateral: Owner can transfer the excess balance of WETH to

FeeReserve.

● setSwapStrategy: Owner can set the address of Swapper utils.

● setOracle: Owner can set new oracle address.

● setYTokenSlippage: Owner can set yTokenSlipage.

SwapStrategyPOL.sol
● cleanDust: Owner can clean dust.

● changeSlippage: Owner can change slippage value.

DaoChef.sol
● add: Owner can add a new LP to the pool.

● set: Owner can update the given pool's reward allocation point and `IRewarder`

contract

● setRewardPerSecond: Owner can set the reward per second to be distributed.

● setRewardMinter: Owner can set the address of rewardMinter.

● depositNFT: Owner can check if User does not have the specified NFT.

● setNftController: Owner can set Nft Controller address.

● setNftBoostRate: Owner can set Nft Boost Rate.

DaoStaking.sol
● addReward: Owner can add a new reward token to be distributed to stakers.

● approveRewardDistributor: Owner can modify approval for an address to call

notifyRewardAmount.

● recoverERC20: Owner can be added to support recovering LP Rewards from other

systems such as BAL to be distributed to holders.

● setTeamWalletAddress: Owner can set team wallet address.

● setTeamRewardPercent: Owner can set team reward percentage.

DaoZapMMSwap.sol
● addZap: Owner can add new zap configuration.

● removeZap: Owner can Deactivate a Zap configuration.

NFTController.sol
● setWhitelist: Owner can set whitelist addresses.

● setDefaultBoostRate: Owner can set default BoostRate value 1%.

● setBoostRate: Owner can set BoostRate value 1%.

Fund.sol
● transfer: Owner can transfer amounts.

Reserve.sol
● setPool: Owner can set pool address.

● removePool: Owner can remove pool address.

UniswapPairOracle.sol
● setPeriod: Owner can set the period.

XToken.sol
● setMinter: Owner can set minter address for XToken.

● removeMinter: Owner can remove minter address from XToken.

AKIBA.sol
● OpenTrade: Owner can set openTrading true status.

● includeToWhitelist: Owner can include address to Whitelist.

● excludeFromWhitlist: Owner can exclude address from Whitelist.

KAVAX.sol
● OpenTrade: Owner can set openTrading true status.

● includeToWhitelist: Owner can include address to Whitelist.

● excludeFromWhitlist: Owner can exclude address from Whitelist.

DaoTreasury.sol
● addStrategy: Owner can add new strategy.

● removeStrategy: Owner can remove the current strategy.

● allocateFee: Owner can allocate protocol's fee to stakers.

StratRecollateralize.sol
● recollateralize: Owner can recollateralize the minting pool.

StratReduceReserveLP.sol
● reduceReserve: Owner can remove liquidity, buy back YToken and burn.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some low severity issues in the smart

contracts and they were resolved in the revised smart contract code. So, the smart
contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Akiba Finance

Pool Diagram

SwapStrategyPOL Diagram

DaoChef Diagram

DaoStaking Diagram

DaoZapMMSwap Diagram

MasterOracle Diagram

UniswapPairOracle Diagram

XToken Diagram

YToken Diagram

DevFund Diagram

EcosystemFund Diagram

Fund Diagram

Reserve Diagram

AKIBA Diagram

NFTController Diagram

KAVAX Diagram

DaoTreasury Diagram

StratRecollateralize Diagram

StratReduceReserveLP Diagram

Slither Results Log

Slither log >> Pool.sol

Slither log >> SwapStrategyPOL.sol

Slither log >> DaoChef.sol

Slither log >> DaoStaking.sol

Slither log >> DaoZapMMSwap.sol

Slither log >> Fund.sol

Slither log >> MasterOracle.sol

Slither log >> UniswapPairOracle.sol

Slither log >> XToken.sol

Slither log >> YToken.sol

Slither log >> StratRecollateralize.sol

Slither log >> StratReduceReserveLP.sol

Slither log >> NFTController.sol

Slither log >> DevFund.sol

Slither log >> EcosystemFund.sol

Slither log >> Reserve.sol

Slither log >> AKIBA.sol

Slither log >> KAVAX.sol

Slither log >> DaoTreasury.sol

Solidity Static Analysis

Pool.sol

SwapStrategyPOL.sol

Timelock.sol

DaoChef.sol

DaoStaking.sol

DaoZapMMSwap.sol

MasterOracle.sol

UniswapPairOracle.sol

XToken.sol

YToken.sol

StratRecollateralize.sol

StratReduceReserveLP.sol

NFTController.sol.sol

DevFund.sol

EcosystemFund.sol

Fund.sol

Reserve.sol

AKIBA.sol

KAVAX.sol

DaoTreasury.sol

Solhint Linter

Pool.sol

Pool.sol:3:1: Error: Compiler version 0.8.4 does not satisfy the r
semver requirement
Pool.sol:19:1: Error: Contract has 24 states declarations but allowed
no more than 15
Pool.sol:77:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Pool.sol:198:17: Error: Avoid to make time-based decisions in your
business logic
Pool.sol:220:34: Error: Avoid to make time-based decisions in your
business logic

SwapStrategyPOL.sol

SwapStrategyPOL.sol:3:1: Error: Compiler version 0.8.4 does not
satisfy the r semver requirement
SwapStrategyPOL.sol:28:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
SwapStrategyPOL.sol:76:9: Error: Variable name must be in mixedCase
SwapStrategyPOL.sol:77:9: Error: Variable name must be in mixedCase
SwapStrategyPOL.sol:74:36: Error: Variable "_reserveIn" is unused
SwapStrategyPOL.sol:74:56: Error: Variable "_tokenIn" is unused
SwapStrategyPOL.sol:77:9: Error: Variable "R" is unused
SwapStrategyPOL.sol:85:127: Error: Avoid to make time-based decisions
in your business logic
SwapStrategyPOL.sol:109:17: Error: Avoid to make time-based decisions
in your business logic

Timelock.sol

Timelock.sol:3:1: Error: Compiler version 0.8.4 does not satisfy the
r semver requirement
Timelock.sol:23:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
Timelock.sol:111:51: Error: Avoid using low level calls.
Timelock.sol:120:16: Error: Avoid to make time-based decisions in
your business logic

DaoChef.sol

DaoChef.sol:3:1: Error: Compiler version 0.8.4 does not satisfy the r
semver requirement
DaoChef.sol:70:13: Error: Avoid to make time-based decisions in your
business logic
DaoChef.sol:71:28: Error: Avoid to make time-based decisions in your
business logic
DaoChef.sol:83:13: Error: Avoid to make time-based decisions in your
business logic
DaoChef.sol:86:32: Error: Avoid to make time-based decisions in your
business logic
DaoChef.sol:90:35: Error: Avoid to make time-based decisions in your
business logic
DaoChef.sol:274:73: Error: Avoid to make time-based decisions in your
business logic

DaoStaking.sol

DaoStaking.sol:3:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement
DaoStaking.sol:15:1: Error: Contract has 16 states declarations but
allowed no more than 15
DaoStaking.sol:48:29: Error: Constant name must be in capitalized
SNAKE_CASE
DaoStaking.sol:51:29: Error: Constant name must be in capitalized
SNAKE_CASE
DaoStaking.sol:54:29: Error: Constant name must be in capitalized
SNAKE_CASE
DaoStaking.sol:81:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

DaoZapMMSwap.sol

DaoZapMMSwap.sol:3:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement
DaoZapMMSwap.sol:35:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
DaoZapMMSwap.sol:80:13: Error: Avoid to make time-based decisions in
your business logic
DaoZapMMSwap.sol:102:32: Error: Code contains empty blocks
DaoZapMMSwap.sol:144:95: Error: Avoid to make time-based decisions in
your business logic
DaoZapMMSwap.sol:169:9: Error: Variable name must be in mixedCase
DaoZapMMSwap.sol:170:9: Error: Variable name must be in mixedCase

NFTController.sol

NFTController.sol:3:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement
NFTController.sol:14:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
NFTController.sol:14:20: Error: Code contains empty blocks
NFTController.sol:48:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
NFTController.sol:48:19: Error: Code contains empty blocks

DevFund.sol

DevFund.sol:3:1: Error: Compiler version 0.8.4 does not satisfy the r
semver requirement

EcosystemFund.sol

EcosystemFund.sol:3:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement

Reserve.sol

Reserve.sol:3:1: Error: Compiler version 0.8.4 does not satisfy the r
semver requirement

Fund.sol

Fund.sol:350:18: Error: Parse error: missing ';' at '{'

MasterOracle.sol

MasterOracle.sol:3:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement
MasterOracle.sol:31:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
MasterOracle.sol:90:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

UniswapPairOracle.sol

UniswapPairOracle.sol:499:18: Error: Parse error: missing ';' at '{'
UniswapPairOracle.sol:581:18: Error: Parse error: missing ';' at '{'
UniswapPairOracle.sol:632:22: Error: Parse error: missing ';' at '{'
UniswapPairOracle.sol:1035:18: Error: Parse error: missing ';' at '{'
UniswapPairOracle.sol:1102:18: Error: Parse error: missing ';' at '{'

XToken.sol

XToken.sol:277:18: Error: Parse error: missing ';' at '{'
XToken.sol:310:18: Error: Parse error: missing ';' at '{'
XToken.sol:359:18: Error: Parse error: missing ';' at '{'
XToken.sol:410:22: Error: Parse error: missing ';' at '{'

YToken.sol

YToken.sol:277:18: Error: Parse error: missing ';' at '{'
YToken.sol:310:18: Error: Parse error: missing ';' at '{'
YToken.sol:359:18: Error: Parse error: missing ';' at '{'
YToken.sol:410:22: Error: Parse error: missing ';' at '{'

AKIBA.sol

AKIBA.sol:3:1: Error: Compiler version 0.8.4 does not satisfy the r
semver requirement
AKIBA.sol:14:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
AKIBA.sol:29:5: Error: Function name must be in mixedCase

KAVAX.sol

KAVAX.sol:3:1: Error: Compiler version 0.8.4 does not satisfy the r
semver requirement
KAVAX.sol:14:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
KAVAX.sol:19:5: Error: Function name must be in mixedCase

StratRecollateralize.sol

StratRecollateralize.sol:360:18: Error: Parse error: missing ';' at

'{'

StratReduceReserveLP.sol

StratReduceReserveLP.sol:489:18: Error: Parse error: missing ';' at
'{'

DaoTreasury.sol

DaoTreasury.sol:3:1: Error: Compiler version 0.8.4 does not satisfy
the r semver requirement
DaoTreasury.sol:23:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

