
Project: Symmetric Protocol
Language: Solidity
Date: June 3rd, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 20

Audit Findings …………………………………………………………………………………… 21

Conclusion ………………………………………………………………………………………. 25

Our Methodology ………………………………………………………………………………... 26

Disclaimers ………………………………………………………………………………………. 28

Appendix

● Code Flow Diagram ……………………………………………………………………... 29

● Slither Results Log ………………………………………………………………………. 43

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Symmetric to perform the Security audit of the
Symmetric Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on June 3rd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Symmetric is a decentralized exchange (DEX) and automated market maker (AMM).

Audit scope

Name Code Review and Security Analysis Report for
Symmetric Protocol Smart Contracts

Platform Solidity

File 1 Authorizer.sol

File 1 MD5 Hash A14C2F014CD8084E588242A59F517B29

File 2 Vault.sol

File 2 MD5 Hash BC7432199901BA0E9A43CDE36B1AC190

File 3 VaultAuthorization.sol

File 3 MD5 Hash EB2CEEF1BE14469E2C11505042A39BC4

File 4 AssetTransfersHandler.sol

File 4 MD5 Hash 102BF0275AB32C9BB96FF31382A46377

File 5 ProtocolFeesCollector.sol

File 5 MD5 Hash 998430C9363547982B9F983B913AD064

File 6 Swaps.sol

https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/vault/contracts/Authorizer.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/vault/contracts/Vault.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/vault/contracts/VaultAuthorization.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/vault/contracts/AssetTransfersHandler.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/vault/contracts/ProtocolFeesCollector.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/vault/contracts/Swaps.sol

File 6 MD5 Hash 1EA05EBB04A7A30D2E9E064428ACBDE6

File 7 PoolRegistry.sol

File 7 MD5 Hash BAEF612AD577C71AD37D26F8541E9CE7

File 8 WeightedPoolFactory.sol

File 8 MD5 Hash 1DE9205B4E1C6B933572D3836C481FF3

File 9 WeightedPool2TokenFactory.sol

File 9 MD5 Hash CA8C31B344ADEB488898854D8AD62139

File 10 BalancerHelpers.sol

File 10 MD5 Hash DF488C795F7951074806EBEAA0CED0C8

File 11 BatchRelayerLibrary.sol

File 11 MD5 Hash C4CB25C8574E58A04FC3F997EFB2674D

File 12 ManagedPoolFactory.sol

File 12 MD5 Hash FA3C3E4F9F5604FE95030D9642F1E9BA

File 13 SymmChef.sol

File 13 MD5 Hash E1FFEA63B84494E4BDFCA5B69E0659F5

File 14 ComplexRewarder.sol

File 14 MD5 Hash 6396175E83DE556241FD9D89730D3D0D

Audit Date June 3rd,2022

https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/vault/contracts/PoolRegistry.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/pool-weighted/contracts/WeightedPoolFactory.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/pool-weighted/contracts/WeightedPool2TokensFactory.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/standalone-utils/contracts/BalancerHelpers.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/standalone-utils/contracts/BatchRelayerLibrary.sol
https://github.com/centfinance/Symmetric.CoreContracts-v2/blob/master/pkg/pool-weighted/contracts/smart/ManagedPoolFactory.sol
https://github.com/centfinance/Symmetric.Farms/blob/master/contracts/SymmChef.sol
https://github.com/centfinance/Symmetric.Farms/blob/master/contracts/ComplexRewarder.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Authorizer.sol
● Authorizer has functions like: revokeRoles,

revokeRolesFromMany, etc.

YES, This is valid.

File 2 Vault.sol
● Vault has functions like: setPaused, etc.

YES, This is valid.

File 3 VaultAuthorization.sol
● VaultAuthorization has functions like:

setAuthorizer, getAuthorizer, etc.

YES, This is valid.

File 4 AssetTransfersHandler.sol
● AssetTransfersHandler has functions like:

_receiveAsset, _sendAsset, etc.

YES, This is valid.

File 5 ProtocolFeesCollector.sol
● Maximum Protocol Swap Fee Percentage: 50%

● Maximum Protocol Flash Loan Fee Percentage:

1%

YES, This is valid.
Owner wallet’s private key
must be handled very
securely. Because if that
is compromised, then it
will create problems.

File 6 Swaps.sol
● Swaps has functions like: swap, batchSwap, etc.

YES, This is valid.

File 7 PoolRegistry.sol
● PoolRegistry has functions like: registerPool,

getPool, etc.

YES, This is valid.

File 8 WeightedPoolFactory.sol
● WeightedPoolFactory has functions like: create,

etc.

YES, This is valid.

File 9 WeightedPool2TokenFactory.sol
● WeightedPool2TokensFactory has functions like:

create, etc.

YES, This is valid.

File 10 BalancerHelpers.sol
● BalancerHelpers has functions like: queryJoin,

queryExit, etc.

YES, This is valid.

File 11 BatchRelayerLibrary.sol
● BatchRelayerLibrary has inherited

BaseRelayerLibrary, AaveWrapping,

LidoWrapping, VaultActions, VaultPermit contacts.

YES, This is valid.

File 12 ManagedPoolFactory.sol
● ManagedPoolFactory has functions like: create,

etc.

YES, This is valid.

File 13 SymmChef.sol
● SymmChef has functions like: poolLength, add,

etc.

YES, This is valid.

File 14 ComplexRewarder.sol
● ComplexRewarder has functions like:

massUpdatePools, pendingToken, etc.

● The ComplexRewarder owner can set the symm

per second to be distributed.

● Owner can reclaim/withdraw any tokens (including

reward tokens) held by this contract.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Moderated

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 14 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Symmetric Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Symmetric Protocol.

The Symmetric team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are well commented on smart contracts. We suggest using Ethereum’s

NatSpec style for the commenting.

Documentation

We were given a Symmetric Protocol smart contract code in the form of a Github weblink.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website

https://dev-symmv2-celo.symmetric.exchange/ which provided rich information about the

project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://dev-symmv2-celo.symmetric.exchange/#/

AS-IS overview

Authorizer.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 canPerform read Passed No Issue
3 grantRoles external Passed No Issue
4 grantRolesGlobally external Passed No Issue
5 grantRolesToMany external Passed No Issue
6 grantRolesGloballyToMany external Passed No Issue
7 revokeRoles external Passed No Issue
8 revokeRolesGlobally external Passed No Issue
9 revokeRolesFromMany external Passed No Issue
10 revokeRolesGloballyFrom

Many
external Passed No Issue

11 hasRole read Passed No Issue
12 getRoleGlobalMemberCou

nt
read Passed No Issue

13 getRoleGlobalMember read Passed No Issue
14 getRoleMemberCountByC

ontract
read Passed No Issue

15 getRoleMemberByContract read Passed No Issue
16 getRoleAdmin read Passed No Issue
17 grantRole write Passed No Issue
18 grantRoleGlobally write Passed No Issue
19 revokeRole write Passed No Issue
20 revokeRoleGlobally write Passed No Issue
21 renounceRole write Passed No Issue
22 renounceRoleGlobally write Passed No Issue
23 _setupRole write Passed No Issue
24 _setRoleAdmin write Passed No Issue
25 _grantRole write Passed No Issue
26 _grantRoleGlobally write Passed No Issue
27 _revokeRole write Passed No Issue
28 _revokeRoleGlobally write Passed No Issue

Vault.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 setPaused external Passed No Issue
3 WETH external Passed No Issue

4 authenticateFor modifier Passed No Issue
5 setAuthorizer external Passed No Issue
6 _setAuthorizer write Passed No Issue
7 getAuthorizer external Passed No Issue
8 setRelayerApproval external Passed No Issue
9 hasApprovedRelayer external Passed No Issue
10 _hasApprovedRelayer internal Passed No Issue
11 _canPerform internal Passed No Issue
12 _typeHash internal Passed No Issue
13 flashLoan external Passed No Issue
14 _tokenGiven write Passed No Issue
15 _tokenCalculated write Passed No Issue
16 _getAmounts write Passed No Issue
17 _swapWithPools write Passed No Issue
18 _swapWithPool write Passed No Issue
19 _processTwoTokenPoolS

wapRequest
write Passed No Issue

20 _processMinimalSwapInf
oPoolSwapRequest

write Passed No Issue

21 _callMinimalSwapInfoPoo
lOnSwapHook

write Passed No Issue

22 _processGeneralPoolSw
apRequest

write Passed No Issue

23 queryBatchSwap external Passed No Issue

VaultAuthorization.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 authenticateFor modifier Passed No Issue
3 setAuthorizer external access by authenticate No Issue
4 _setAuthorizer write Passed No Issue
5 getAuthorizer external Passed No Issue
6 setRelayerApproval external Function input parameters

lack of check
Refer Audit

Findings
7 hasApprovedRelayer external Passed No Issue
8 _authenticateFor internal Passed No Issue
9 _hasApprovedRelayer internal Passed No Issue
10 _canPerform internal Passed No Issue
11 _typeHash internal Passed No Issue
12 nonReentrant modifier Passed No Issue
13 _enterNonReentrant write Passed No Issue
14 _exitNonReentrant write Passed No Issue
15 authenticate modifier Passed No Issue
16 _authenticateCaller internal Passed No Issue
17 getActionId read Passed No Issue

18 _canPerform internal Passed No Issue
19 getDomainSeparator external Passed No Issue
20 getNextNonce external Passed No Issue
21 _validateSignature internal Passed No Issue
22 _isSignatureValid write Passed No Issue
23 _typeHash internal Passed No Issue
24 _signature internal Passed No Issue
25 _deadline internal Passed No Issue
26 _calldata internal Passed No Issue
27 _decodeExtraCalldataWo

rd
write Passed No Issue

28 _require write Passed No Issue
29 _revert write Passed No Issue
30 whenNotPaused modifier Passed No Issue
31 getPausedState external Passed No Issue
32 _setPaused internal Passed No Issue
33 _ensureNotPaused internal Passed No Issue
34 _ensurePaused internal Passed No Issue
35 _isNotPaused internal Passed No Issue
36 _getPauseWindowEndTi

me
write Passed No Issue

37 _getBufferPeriodEndTime write Passed No Issue

AssetTransfersHandler.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 _receiveAsset internal Passed No Issue
3 _sendAsset internal Passed No Issue
4 _handleRemainingEth internal Passed No Issue
5 receive external Passed No Issue
6 _increaseInternalBalance internal Passed No Issue
7 _decreaseInternalBalance internal Passed No Issue
8 _WETH internal Passed No Issue
9 _isETH internal Passed No Issue
10 _translateToIERC20 internal Passed No Issue
11 _translateToIERC20 internal Passed No Issue
12 _asIERC20 internal Passed No Issue

ProtocolFeesCollector.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 withdrawCollectedFees external Function input
parameters lack of check

Refer Audit
Findings

3 setSwapFeePercentage external access by authenticate No Issue
4 setFlashLoanFeePercent

age
external access by authenticate No Issue

5 getSwapFeePercentage external Passed No Issue
6 getFlashLoanFeePercent

age
external Passed No Issue

7 getCollectedFeeAmounts external Passed No Issue
8 getAuthorizer external Passed No Issue
9 _canPerform internal Passed No Issue
10 _getAuthorizer internal Passed No Issue
11 authenticate modifier Passed No Issue
12 _authenticateCaller internal Passed No Issue
13 getActionId read Passed No Issue
14 _canPerform internal Passed No Issue
15 nonReentrant modifier Passed No Issue
16 _enterNonReentrant write Passed No Issue
17 _exitNonReentrant write Passed No Issue

Swaps.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _enterNonReentrant write Passed No Issue
4 _exitNonReentrant write Passed No Issue
5 swap external Critical operation

lacks event log
Refer Audit

Findings
6 batchSwap external Critical operation

lacks event log
Refer Audit

Findings
7 _tokenGiven write Passed No Issue
8 _tokenCalculated write Passed No Issue
9 _getAmounts write Passed No Issue
10 _swapWithPools write Passed No Issue
11 _swapWithPool write Passed No Issue
12 _processTwoTokenPoolS

wapRequest
write Passed No Issue

13 _processMinimalSwapInf
oPoolSwapRequest

write Passed No Issue

14 _callMinimalSwapInfoPoo
lOnSwapHook

internal Passed No Issue

15 queryBatchSwap external Critical operation
lacks event log

Refer Audit
Findings

16 joinPool external Passed No Issue
17 exitPool external Passed No Issue

18 _toPoolBalanceChange write Passed No Issue
19 _toPoolBalanceChange write Passed No Issue
20 _joinOrExit write access by

authenticate
No Issue

21 _callPoolBalanceChange write Passed No Issue
22 _processJoinPoolTransfe

rs
write Passed No Issue

23 _processExitPoolTransfer
s

write Passed No Issue

24 _validateTokensAndGetB
alances

read Passed No Issue

25 _unsafeCastToInt256 write Passed No Issue

PoolRegistry.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 withRegisteredPool modifier Passed No Issue
3 onlyPool modifier Passed No Issue
4 _ensureRegisteredPool internal Passed No Issue
5 _ensurePoolIsSender read Passed No Issue
6 registerPool external Passed No Issue
7 getPool external Passed No Issue
8 _toPoolId internal Passed No Issue
9 _getPoolAddress internal Passed No Issue
10 _getPoolSpecialization internal Passed No Issue
11 authenticateFor modifier Passed No Issue
12 setAuthorizer external access by

authenticate
No Issue

13 _setAuthorizer write Passed No Issue
14 getAuthorizer external Passed No Issue
15 setRelayerApproval external access by

authenticate
No Issue

16 hasApprovedRelayer external Passed No Issue
17 _hasApprovedRelayer internal Passed No Issue
18 _canPerform internal Passed No Issue
19 _typeHash internal Passed No Issue

WeightedPoolFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 create external Passed No Issue
3 getVault read Passed No Issue

4 isPoolFromFactory external Passed No Issue
5 _create internal Passed No Issue
6 getPauseConfiguration read Passed No Issue

WeightedPool2TokenFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getVault read Passed No Issue
3 isPoolFromFactory external Passed No Issue
4 _create internal Passed No Issue
5 getPauseConfiguration read Passed No Issue
6 create external Passed No Issue

BalancerHelpers.sol
Functions

Sl. Functions Type Observation Conclusio
n

1 constructor write Passed No Issue
2 queryJoin external Function input parameters

lack of check, Critical
operation lacks event log

Refer Audit
Findings

3 queryExit external Function input parameters
lack of check, Critical

operation lacks event log

Refer Audit
Findings

4 _validateAssetsAndGetB
alances

internal Passed No Issue

5 _WETH internal Passed No Issue
6 _isETH internal Passed No Issue
7 _translateToIERC20 internal Passed No Issue
8 _translateToIERC20 internal Passed No Issue
9 _asIERC20 internal Passed No Issue

BatchRelayerLibrary.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getVault read Passed No Issue
3 getEntrypoint read Passed No Issue
4 setRelayerApproval external Function input parameters

lack of check
Refer Audit

Findings

5 approveVault write Function input parameters
lack of check

Refer Audit
Findings

6 _pullToken internal Passed No Issue
7 _pullTokens internal Passed No Issue
8 _isChainedReference internal Passed No Issue
9 _setChainedReferenceVa

lue`
internal Passed No Issue

10 _getChainedReferenceVa
lue

internal Passed No Issue

11 _getTempStorageSlot read Passed No Issue
12 wrapAaveDynamicToken external Passed No Issue
13 unwrapAaveStaticToken external Passed No Issue
14 _require write Passed No Issue
15 _revert write Passed No Issue
16 wrapStETH external Passed No Issue
17 unwrapWstETH external Passed No Issue
18 stakeETH external Passed No Issue
19 stakeETHAndWrap external Passed No Issue
20 swap external Passed No Issue
21 batchSwap external Passed No Issue
22 manageUserBalance external Passed No Issue
23 joinPool external Passed No Issue
24 _doJoinPoolChainedRefe

renceReplacements
write Passed No Issue

25 _doWeightedJoinChained
ReferenceReplacements

write Passed No Issue

26 _doWeightedExactToken
sInForBPTOutReplaceme
nts

write Passed No Issue

27 exitPool external Passed No Issue
28 _doExitPoolChainedRefe

renceReplacements
write Passed No Issue

29 _doWeightedExitChained
ReferenceReplacements

write Passed No Issue

30 _doWeightedExactBptInF
orOneTokenOutReplace
ments

write Passed No Issue

31 _doWeightedExactBptInF
orTokensOutReplacemen
ts

write Passed No Issue

32 vaultPermit write Passed No Issue
33 vaultPermitDAI write Passed No Issue

ManagedPoolFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 create external Passed No Issue
3 isPoolFromFactory external Passed No Issue

SymmChef.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 poolLength read Passed No Issue
3 add write Function input

parameters lack of
check, Duplicate LP can

be added

Refer Audit
Findings

4 set write Function input
parameters lack of check

Refer Audit
Findings

5 setSymmPerSecond write access only Owner No Issue
6 pendingSymm external Function input

parameters lack of check
Refer Audit

Findings
7 massUpdatePools external Passed No Issue
8 updatePool write Passed No Issue
9 deposit write Function input

parameters lack of check
Refer Audit

Findings
10 withdraw write Function input

parameters lack of check
Refer Audit

Findings
11 harvest write Function input

parameters lack of check
Refer Audit

Findings
12 withdrawAndHarvest write Function input

parameters lack of check
Refer Audit

Findings
13 emergencyWithdraw write Function input

parameters lack of check
Refer Audit

Findings
14 transferOwnership write access only Owner No Issue
15 claimOwnership write Passed No Issue
16 onlyOwner modifier Passed No Issue
17 permitToken write Passed No Issue

ComplexRewarder.sol
Functions

Sl. Functions Type Observation Conclusio
n

1 constructor write Passed No Issue
2 transferOwnership write access only Owner No Issue
3 claimOwnership write Passed No Issue
4 onlyOwner modifier Passed No Issue
5 onSymmReward external Function input parameters

lack of check
Refer Audit

Findings

6 pendingTokens external Function input parameters
lack of check

Refer Audit
Findings

7 setRewardPerSecond write access only Owner No Issue
8 onlyChef modifier Passed No Issue
9 poolLength read Passed No Issue
10 add write access only Owner No Issue
11 set write access only Owner No Issue
12 reclaimTokens write Function input parameters

lack of check
Refer Audit

Findings
13 pendingToken read Function input parameters

lack of check
Refer Audit

Findings
14 massUpdatePools external Passed No Issue
15 updatePool write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Duplicate LP can be added: SymmChef.sol

As per the comments, duplicate lp tokens should not be added into the pool. But there is

no validation for duplicate lp tokens. So the owner can add the same lp tokens more than

once.

Resolution: We suggest adding validation for duplicate checks for lp tokens in the pool.

(1) Function input parameters lack of check:

Variable validation is not performed in below functions:

VaultAuthorization.sol

● setRelayerApproval = sender , relayer.

ProtocolFeesCollector.sol

● withdrawCollectedFees = recipient.

BalancerHelpers.sol

● queryjoin = recipient , sender

● queryExit = recipient , sender

SymmChef.sol

● add = _lpToken , _rewarder

● set = _rewarder

● pendingSymm = _user

● deposit = to

● withdraw = to

● harvet = to

● withdrawAndHarvest = to

● emergencyWithdraw= to

ComplexRewarder.sol

● onSymmReward = to , _user

● pendingTokens = user

● reclaimTokens = to

● pendingToken = _user

BatchRelayerLibrary.sol

● setRelayerApproval = relayer

● approveVault = token

Resolution: We advise to put validation like integer type variables should be greater than

0 and address type variables should not be address(0).

(2) Critical operation lacks event log:

Missing event log for:

Swaps.sol

● swap

● batchswap

● queryBatchSwap

BalancerHelpers.sol

● queryJoin

● queryExit

Resolution: Write an event log for listed events.

Very Low / Informational / Best practices:

No Informational severity vulnerabilities were found.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setAuthorizer: VaultAuthorization can set a new authorizer.

● setRelayerApproval: VaultAuthorization can set relayer approval.

● receive: VaultAuthorization can enable the Vault to receive ETH.

● onSymmReward: ComplexRewarder chef owner can set on symm reward address.

● setRewardPerSecond: ComplexRewarder owner can set the symm per second to

be distributed.

● :add: ComplexRewarder owner can add a new LP to the pool.

● set: ComplexRewarder owner can update the given pool's SYMM allocation point

and `IRewarder` contract.

● reclaimTokens: ComplexRewarder owner can allow owner to reclaim/withdraw any

tokens (including reward tokens) held by this contract.

● withdrawCollectedFees: ProtocolFeesCollector can withdraw collected fees.

● setSwapFeePercentage: ProtocolFeesCollector can set swap fee percentage value.

● setFlashLoanFeePercentage: ProtocolFeesCollector can set flash loan percentage

value.

● swap: Swaps authenticate can execute a single swap.

● batchSwap: Swaps authenticate can perform multiple swaps in sequence.

● add: SymmChef owner can add a new LP to the pool.

● set: SymmChef owner can update the given pool's SYMM allocation point and

`IRewarder` contract.

● setSymmPerSecond: SymmChef owner can set the symm per second to be

distributed.

● setPaused: Vault owner can set paused status.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of github weblink. And we have used all

possible tests based on given objects as files. We have not observed any major issues in

the smart contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Symmetric Protocol

Authorizer Diagram

Vault Diagram

VaultAuthorization Diagram

AssetTransfersHandler Diagram

ProtocolFeesCollector Diagram

Swaps Diagram

PoolRegistry Diagram

WeightedPoolFactory Diagram

WeightedPool2TokenFactory Diagram

BalancerHelpers Diagram

BatchRelayerLibrary Diagram

ManagedPoolFactory Diagram

SymmChef Diagram

ComplexRewarder Diagram

Slither Results Log

+Slither log >> Authorizer.sol

Slither log >> VaultAuthorization.sol

Slither log >> ProtocolFeesCollector.sol

Slither log >> PoolRegistry.sol

Slither log >> SymmChef.sol

Slither log >> ComplexRewarder.sol

Slither log >> Vault.sol

Slither log >> AssetTransfersHandler.sol

Slither log >> Swaps.sol

Slither log >> WeightedPoolFactory.sol

Slither log >> WeightedPool2TokenFactory.sol

Slither log >> BatchRelayerLibrary.sol

Slither log >> BalancerHelpers.sol

Slither log >> ManagedPoolFactory.sol

