
Project: IVY Defi Protocol
Website: www.ivydefi.vip
Platform: Binance Smart Chain
Language: Solidity
Date: June 30th, 2022

https://www.ivydefi.vip/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 15

Audit Findings …………………………………………………………………………………… 16

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 31

● Solidity static analysis ….……………………………………………………………….. 36

● Solhint Linter …………………………………………………………………….……….. 45

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by IVY Defi to perform the Security audit of the IVY Defi
Protocol smart contracts code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on June 30th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● IVY, all transactions, mortgages and governance on the platform are transparent

and on-chain. It is established on BSC, the largest decentralized application

ecosystem, aiming to provide global users with a set of easy-to-use and highly

transparent financial services.

● IVY Defi Protocol is a smart contract having functions like: mint, burn, mintIvy,

transferIvyFrom, transferIvy, stake, unstake, mintSIvy, registerPool, etc.

Audit scope

Name Code Review and Security Analysis Report for
IVY Defi Protocol Smart Contracts

Platform Binance Chain / Solidity

File 1 AccessControl.sol

File 1 MD5 Hash 3741F006AAB540B961C5A379E460FA70

File 2 ERC20.sol

File 2 MD5 Hash 42F9A10ADF073571D6B9AC3E1B660925

File 3 EscrowedIvyERC20.sol

File 3 MD5 Hash F3C5999E8BDDB4F827B80BB0ACEC509B

File 4 IvyAware.sol

https://github.com/cryptozhang2022/ivycontracts/blob/main/AccessControl.sol
https://github.com/cryptozhang2022/ivycontracts/blob/main/ERC20.sol
https://github.com/cryptozhang2022/ivycontracts/blob/main/EscrowedIvyERC20.sol
https://github.com/cryptozhang2022/ivycontracts/blob/main/IvyAware.sol

File 4 MD5 Hash 7D714F63921C19213DE47FD7F1E4E414

File 5 IvyCorePool.sol

File 5 MD5 Hash 395AD9C73CAEA3479D04C18453716AD8

File 6 IvyERC20.sol

File 6 MD5 Hash 642C609D7F77E4E0F9D1D61C00ED74D2

File 7 IvyPoolBase.sol

File 7 MD5 Hash FB17C3801D75659010ADF8F0D74F9503

File 8 IvyPoolFactory.sol

File 8 MD5 Hash 1FE83385AFEC30778571F1AFF4F011B3

File 9 Ownable.sol

File 9 MD5 Hash 57F6D8C093C639C358D33A7357DE96CB

File 10 ReentrancyGuard.sol

File 10 MD5 Hash B955F5BBF6FBD7698BD823D04DA7C4E1

Audit Date June 30th,2022

https://github.com/cryptozhang2022/ivycontracts/blob/main/IvyCorePool.sol
https://github.com/cryptozhang2022/ivycontracts/blob/main/IvyERC20.sol
https://github.com/cryptozhang2022/ivycontracts/blob/main/IvyPoolBase.sol
https://github.com/cryptozhang2022/ivycontracts/blob/main/IvyPoolFactory.sol
https://github.com/cryptozhang2022/ivycontracts/blob/main/Ownable.sol
https://github.com/cryptozhang2022/ivycontracts/blob/main/ReentrancyGuard.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 AccessControl.sol
● AccessControl has functions like: features,

updateRole, etc.

YES, This is valid.

File 2 ERC20.sol
● ERC20 has functions like: allowance, etc.

YES, This is valid.

File 3 EscrowedIvyERC20.sol
● Name: Escrowed Ivy

● Symbol: eIVY

YES, This is valid.

File 4 IvyAware.sol
● IvyAware has functions like: transferIvy, etc.

YES, This is valid.

File 5 IvyCorePool.sol
● IvyCorePool owner can execute Set the vault.

● IvyCorePool owner can execute by the vault to

transfer vault rewards IVY from the vault into the

pool.

YES, This is valid.

File 6 IvyERC20.sol
● Name: Ivy

● Symbol: IVY

● Decimals: 18

● Initial Supply: 4000

● Max Supply: 10000

YES, This is valid.

File 7 IvyPoolBase.sol
● IvyPoolBase has functions like:

pendingYieldRewards, getDeposit, etc.

YES, This is valid.

File 8 IvyPoolFactory.sol
● IvyPoolFactory can create a core pool

YES, This is valid.

(IvyCorePool) and register it within the factory.

● IvyPoolFactory can set the end block when

necessary.

File 9 Ownable.sol
● Ownable can renounce Ownership.

● Ownable can transfer ownership of the contract to

a new account.

YES, This is valid.

File 10 ReentrancyGuard.sol
● ReentrancyGuard contract module that helps

prevent reentrant calls to a function.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 10 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the IVY Defi Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the IVY Defi Protocol.

The IVY Defi team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are well commented on smart contracts. We suggest using Ethereum’s

NatSpec style for the commenting.

Documentation

We were given an IVY Defi Protocol smart contract code in the form of a Github web link.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website https://www.ivydefi.vip/ which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://www.ivydefi.vip/

AS-IS overview

AccessControl.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 features read Passed No Issue
3 updateFeatures write Passed No Issue
4 updateRole write Passed No Issue
5 evaluateBy read Passed No Issue
6 isFeatureEnabled read Passed No Issue
7 isSenderInRole read Passed No Issue
8 isOperatorInRole read Passed No Issue
9 __hasRole internal Passed No Issue

ERC20.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue
10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _setupDecimals internal Passed No Issue
18 _beforeTokenTransfer internal Passed No Issue

EscrowedIvyERC20.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 mint external Passed No Issue
3 burn external Passed No Issue
4 name read Passed No Issue
5 symbol read Passed No Issue
6 decimals read Passed No Issue
7 totalSupply read Passed No Issue
8 balanceOf read Passed No Issue
9 transfer write Passed No Issue
10 allowance read Passed No Issue
11 approve write Passed No Issue
12 transferFrom write Passed No Issue
13 increaseAllowance write Passed No Issue
14 decreaseAllowance write Passed No Issue
15 _transfer internal Passed No Issue
16 _mint internal Unlimited Minting Refer Audit

Findings
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _setupDecimals internal Passed No Issue
20 _beforeTokenTransfer internal Passed No Issue

IvyAware.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 transferIvy internal Passed No Issue
3 transferIvyFrom internal Passed No Issue
4 mintIvy internal Passed No Issue

IvyCorePool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 mintIvy internal Passed No Issue
3 pendingYieldRewards external Passed No Issue
4 balanceOf external Passed No Issue
5 getDeposit external Passed No Issue
6 getDepositsLength external Passed No Issue
7 stake external Passed No Issue
8 unstake external Passed No Issue
9 updateStakeLock external Passed No Issue
10 sync external Passed No Issue
11 processRewards external Passed No Issue

12 setWeight external Passed No Issue
13 _pendingYieldRewards internal Passed No Issue
14 _stake internal Passed No Issue
15 _unstake internal Passed No Issue
16 _sync internal Passed No Issue
17 _processRewards internal Passed No Issue
18 _updateStakeLock internal Passed No Issue
19 weightToReward write Passed No Issue
20 rewardToWeight write Passed No Issue
21 blockNumber read Passed No Issue
22 now256 read Passed No Issue
23 mintSIvy write Passed No Issue
24 transferPoolToken internal Passed No Issue
25 transferPoolTokenFrom internal Passed No Issue
26 pendingVaultRewards read Passed No Issue
27 setVault external Passed No Issue
28 processRewards external Passed No Issue
29 receiveVaultRewards external Passed No Issue
30 stakeAsPool external Unused function Refer Audit

Findings
31 _stake internal Passed No Issue
32 _unstake internal Passed No Issue
33 _processRewards internal Passed No Issue
34 _processVaultRewards write Passed No Issue

IvyERC20.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 features read Passed No Issue
3 updateFeatures write Passed No Issue
4 updateRole write Passed No Issue
5 evaluateBy read Passed No Issue
6 isFeatureEnabled read Passed No Issue
7 isSenderInRole read Passed No Issue
8 isOperatorInRole read Passed No Issue
9 __hasRole internal Passed No Issue
10 balanceOf read Passed No Issue
11 transfer write Passed No Issue
12 transferFrom write Passed No Issue
13 safeTransferFrom write Passed No Issue
14 unsafeTransferFrom write Passed No Issue
15 approve write Passed No Issue
16 allowance read Passed No Issue
17 increaseAllowance write Passed No Issue
18 decreaseAllowance write Passed No Issue

19 mint write Passed No Issue
20 burn write Passed No Issue
21 getVotingPower read Passed No Issue
22 getVotingPowerAt read Passed No Issue
23 getVotingPowerHistory read Passed No Issue
24 getVotingPowerHistoryLe

ngth
read Passed No Issue

25 delegate write Passed No Issue
26 delegateWithSig write Passed No Issue
27 __delegate write Passed No Issue
28 __moveVotingPower write Passed No Issue
29 __updateVotingPower write Passed No Issue
30 __binaryLookup read Passed No Issue

IvyPoolBase.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 transferIvy internal Passed No Issue
3 transferIvyFrom internal Passed No Issue
4 mintIvy internal Passed No Issue
5 pendingYieldRewards external Passed No Issue
6 balanceOf external Passed No Issue
7 getDeposit external Passed No Issue
8 getDepositsLength external Passed No Issue
9 stake external Passed No Issue
10 unstake external Passed No Issue
11 updateStakeLock external Passed No Issue
12 sync external Passed No Issue
13 processRewards external Passed No Issue
14 setWeight external Passed No Issue
15 _pendingYieldRewards internal Passed No Issue
16 _stake internal Passed No Issue
17 _unstake internal Passed No Issue
18 _sync internal Passed No Issue
19 _processRewards internal Passed No Issue
20 _updateStakeLock internal Passed No Issue
21 weightToReward write Passed No Issue
22 rewardToWeight write Passed No Issue
23 blockNumber read Passed No Issue
24 now256 read Passed No Issue
25 mintSIvy write Unused function Refer Audit

Findings
26 transferPoolToken internal Passed No Issue
27 transferPoolTokenFrom internal Passed No Issue
28 nonReentrant modifier Passed No Issue

IvyPoolFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 transferIvy internal Passed No Issue
3 transferIvyFrom internal Passed No Issue
4 mintIvy internal Passed No Issue
5 owner read Passed No Issue
6 onlyOwner modifier Passed No Issue
7 renounceOwnership write access only Owner No Issue
8 transferOwnership write access only Owner No Issue
9 getPoolAddress external Passed No Issue
10 getPoolData read Passed No Issue
11 shouldUpdateRatio read Passed No Issue
12 createPool external access only Owner No Issue
13 setEndBlock external access only Owner No Issue
14 setIvyPerBlock external access only Owner No Issue
15 registerPool write access only Owner No Issue
16 updateIVYPerBlock external Passed No Issue
17 mintYieldTo external Passed No Issue
18 changePoolWeight external Passed No Issue
19 blockNumber read Passed No Issue

Ownable.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue

ReentrancyGuard.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Unlimited Minting:- EscrowedIvyERC20.sol

Token creators can mint unlimited tokens.

Token minting without any maximum limit is considered inappropriate for tokenomics.

Resolution: We recommend placing some limit on token minting to mitigate this issue.

(2) Unused interface / function / variables:

IvyPoolBase.sol

ICorePool.sol has been imported but not used.

mintSIvy is defined as an internal function, but not used.

sIVY variable has been defined and set while deploying, but not used in code.

IvyCorePool.sol

StakeAsPool is an external function but executed only by pool address added into the

factory. But given poolbase has not used this function.

IvyERC20.sol

FEATURE_TRANSFERS, FEATURE_TRANSFERS_ON_BEHALF, ERC20_RECEIVED

are unused variables.

Resolution: We suggest removing unused interface / functions / variables.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setVault: IvyCorePool owner can execute to Set the vault.

● receiveVaultRewards: IvyCorePool owner can execute by the vault to transfer vault

rewards IVY from the vault into the pool.

● setWeight: IvyPoolBase owner can set weight.

● createPool: IvyPoolFactory owner can create a core pool (IvyCorePool) and register

it within the factory.

● setEndBlock: IvyPoolFactory owner can set end block when necessary.

● setIvyPerBlock: IvyPoolFactory owner can set ivy per block when necessary.

● registerPool: IvyPoolFactory owner can register an already deployed pool instance

within the factory.

● changePoolWeight: IvyPoolFactory owner can change the weight of the pool.

● renounceOwnership: Ownable can renounce new ownership.

● transferOwnership: Ownable can transfer ownership of the contract to a new

account (`newOwner`).

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Github weblink. And we have used all

possible tests based on given objects as files. We have not observed any major issues in

the smart contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - IVY Defi Protocol

AccessControl Diagram

Ownable Diagram

ReentrancyGuard Diagram

ERC20 Diagram

EscrowedIvyERC20 Diagram

IvyAware Diagram

IvyCorePool Diagram

IvyERC20 Diagram

IvyPoolBase Diagram

IvyPoolFactory Diagram

Slither Results Log

Slither log >> AccessControl.sol

Slither log >> ERC20.sol

Slither log >> EscrowedIvyERC20.sol

Slither log >> IvyAware.sol

Slither log >> IvyCorePool.sol

Slither log >> IvyERC20.sol

Slither log >> IvyPoolFactory.sol

Slither log >> IvyPoolBase.sol

Slither log >> Ownable.sol

Slither log >> ReentrancyGuard.sol

Solidity Static Analysis

AccessControl.sol

ERC20.sol

EscrowedIvyERC20.sol

IvyAware.sol

IvyCorePool.sol

IvyERC20.sol

IvyPoolBase.sol

IvyPoolFactory.sol

Ownable.sol

ReentrancyGuard.sol

Solhint Linter

AccessControl.sol

AccessControl.sol:2:1: Error: Compiler version 0.8.0 does not satisfy
the r semver requirement
AccessControl.sol:13:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

ERC20.sol

ERC20.sol:3:1: Error: Compiler version 0.8.0 does not satisfy the r
semver requirement
ERC20.sol:40:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
ERC20.sol:156:24: Error: Code contains empty blocks

EscrowedIvyERC20.sol

EscrowedIvyERC20.sol:2:1: Error: Compiler version 0.8.0 does not
satisfy the r semver requirement
EscrowedIvyERC20.sol:39:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
EscrowedIvyERC20.sol:155:24: Error: Code contains empty blocks
EscrowedIvyERC20.sol:167:3: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

IvyAware.sol

IvyAware.sol:3:1: Error: Compiler version >=0.8.0 does not satisfy
the r semver requirement
IvyAware.sol:32:3: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
IvyAware.sol:97:5: Error: Avoid using inline assembly. It is
acceptable only in rare cases
IvyAware.sol:126:26: Error: Constant name must be in capitalized
SNAKE_CASE
IvyAware.sol:138:26: Error: Constant name must be in capitalized
SNAKE_CASE
IvyAware.sol:153:25: Error: Constant name must be in capitalized
SNAKE_CASE
IvyAware.sol:453:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyAware.sol:592:38: Error: Code contains empty blocks

IvyAware.sol:582:73: Error: Variable "_data" is unused
IvyAware.sol:1082:13: Error: Avoid to make time-based decisions in
your business logic
IvyAware.sol:1265:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)

IvyCorePool.sol

IvyCorePool.sol:2:1: Error: Compiler version 0.8.0 does not satisfy
the r semver requirement
IvyCorePool.sol:308:5: Error: Avoid using inline assembly. It is
acceptable only in rare casesIvyCorePool.sol:659:3: Error: Explicitly
mark visibility in function (Set ignoreConstructors to true if using
solidity >=0.7.0)
IvyCorePool.sol:726:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyCorePool.sol:815:25: Error: Constant name must be in capitalized
SNAKE_CASE
IvyCorePool.sol:1115:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity
>=0.7.0)IvyCorePool.sol:1217:73: Error: Variable "_data" is unused
IvyCorePool.sol:1717:13: Error: Avoid to make time-based decisions in
your business logic
IvyCorePool.sol:2336:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyCorePool.sol:2778:16: Error: Avoid to make time-based decisions in
your business logic
IvyCorePool.sol:2803:35: Error: Constant name must be in capitalized
SNAKE_CASE
IvyCorePool.sol:2855:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyCorePool.sol:2863:89: Error: Code contains empty blocks

IvyERC20.sol

IvyERC20.sol:2:1: Error: Compiler version >=0.8.0 does not satisfy
the r semver requirement
IvyERC20.sol:31:3: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)
IvyERC20.sol:96:5: Error: Avoid using inline assembly. It is
acceptable only in rare cases
IvyERC20.sol:152:25: Error: Constant name must be in capitalized
SNAKE_CASE
IvyERC20.sol:452:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyERC20.sol:591:38: Error: Code contains empty blocks
IvyERC20.sol:581:73: Error: Variable "_data" is unused
IvyERC20.sol:1081:13: Error: Avoid to make time-based decisions in
your business logic

IvyPoolBase.sol

IvyPoolBase.sol:2:1: Error: Compiler version 0.8.0 does not satisfy
the r semver requirement
IvyPoolBase.sol:32:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyPoolBase.sol:97:5: Error: Avoid using inline assembly. It is
acceptable only in rare cases
IvyPoolBase.sol:116:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyPoolBase.sol:205:25: Error: Constant name must be in capitalized
SNAKE_CASE
IvyPoolBase.sol:505:3: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyPoolBase.sol:644:38: Error: Code contains empty blocks
IvyPoolBase.sol:634:73: Error: Variable "_data" is unused
IvyPoolBase.sol:1134:13: Error: Avoid to make time-based decisions in
your business logic
IvyPoolBase.sol:2352:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyPoolBase.sol:2794:16: Error: Avoid to make time-based decisions in
your business logic
IvyPoolBase.sol:2819:35: Error: Constant name must be in capitalized
SNAKE_CASE
IvyPoolBase.sol:2871:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
IvyPoolBase.sol:2879:89: Error: Code contains empty blocks

IvyPoolFactory.sol

IvyPoolFactory.sol:2:1: Error: Compiler version 0.8.0 does not
satisfy the r semver requirement

IvyPoolFactory.sol:31:3: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

IvyPoolFactory.sol:96:5: Error: Avoid using inline assembly. It is
acceptable only in rare cases

IvyPoolFactory.sol:115:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

IvyPoolFactory.sol:204:25: Error: Constant name must be in
capitalized SNAKE_CASE

IvyPoolFactory.sol:504:3: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

IvyPoolFactory.sol:643:38: Error: Code contains empty blocks

IvyPoolFactory.sol:633:73: Error: Variable "_data" is unused

IvyPoolFactory.sol:1133:13: Error: Avoid to make time-based decisions
in your business logic

IvyPoolFactory.sol:1708:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

IvyPoolFactory.sol:1810:34: Error: Code contains empty blocks

Ownable.sol

Ownable.sol:2:1: Error: Compiler version 0.8.0 does not satisfy the r
semver requirement
Ownable.sol:24:5: Error: Explicitly mark visibility in function (Set
ignoreConstructors to true if using solidity >=0.7.0)

ReentrancyGuard.sol

ReentrancyGuard.sol:6:1: Error: Compiler version 0.8.0 does not
satisfy the r semver requirement
ReentrancyGuard.sol:41:3: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

