@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: GaiaStarter Protocol
Platform: Astar Network
Language: Solidity

Date: May 11th, 2022

Table of contents

(oo 11 o 1 o 4
Project Background ... 4
AU S0P ..ttt 5
Claimed Smart Contract Featuresooiiiiiii e 6
AUAIt SUMMIAIY oottt 7
Technical QUICK Stats ..o e 8
Code QUAIRY ...t e 9
DOoCUMENTAtION ... 9
L LT o) D= o= o [T o [9
ASIS OVEIVIEW ... e 10
Severity DefinitioNS ... 15
AUt FINAINGS oo 16
CONCIUSION ..t et 24
(@ 0] 1Y/ =1 1 T Yo [o] 0T | 25
DISCIAIMEIS ... e 27
Appendix
® Code FIOW Diagram ... 28
o Slither RESUIS LOQ ...uviiiiii e e 34
e Solidity staticanalysis ..., 39
® SOININt LiNter .o e 46

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the GaiaStarter team to perform the Security audit of the
GaiaStarter Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 11th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The GaiaStarter Contracts have functions like Stake, UnStake, Claim, WithDraw, fund,
poolLength, add, set, deposited, pending, totalPending, deposit, burn, mint, AirDrop,
snapshot, release, pending, deposited, etc. The GaiaStarter Contracts inherit the ERC20,
IERC721, Ownable, SafeERC20, SafeMath, ERC20Burnable, ERC20Snapshot,
AccessControl, Pausable, ReentrancyGuard standard smart contracts from the
OpenZeppelin library. These OpenZeppelin contracts are considered community-audited

and time-tested, and hence are not part of the audit scope.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
GaiaStarter Protocol Smart Contracts

Platform Astar / Solidity

File 1 NFTStaking.sol

File 1 MD5 Hash

651D758CE14200112A55C1D6BD92EDEF

File 2

MasterChef.sol

File 2 MD5 Hash

7629993B187DD656965F000778BD9400

File 3

Token.sol

File 3 MD5 Hash

CE1686F76467E6D408A18ECBE187447D

File 4

IFO.sol

File 4 MD5 Hash

7BB85D39FACFD583834FE568DF20F05A

File 5

IFOMasterChef.sol

File 5 MD5 Hash

C094A68D2B63748691F29DEFFB759EBG

File 6

Crowdsale.sol

File 6 MD5 Hash

1A7CF0D247CC045BF0D937CC6CA04A51

Audit Date

May 11th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 NFTStaking.sol YES, This is valid.
e Deposit Amount: 5 Sextillion.
e Expectation Stake Token CNT: 5000
e Expectation Emission Token CNT: 10,000.

File 2 MasterChef.sol YES, This is valid.
o MasterChef has functions like: add, set, fund,

poolLength, totalPending, etc.

File 3 Token.sol YES, This is valid.

e Token has functions like: snapshot, mint, etc.

File 4 IFO.sol YES, This is valid.
e |IFO has functions like: setOfferingAmount,

setStartTimestamp, deposit,etc.

File 5 IFOMasterChef.sol YES, This is valid.
e |FOMasterChef has functions like: fund,
poolLength, deposited, etc.
e Symbol:

File 6 Crowdsale.sol YES, This is valid.
e Crowdsale has functions like: buyTokens, release,

releaseAmount, setRate, etc.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 3 low and very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Moderated
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 6 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the GaiaStarter Protocol are part of its logical algorithm. A library is a
different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the GaiaStarter Protocol.

The GaiaStarter team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a GaiaStarter Protocol smart contract code in the form of github weblink.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand
the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

NFTStaking.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | Stake external Passed No Issue
8 | UnStake external Passed No Issue
9 [GetClaimableRewardsAll external Passed No Issue
10 | GetClaimableRewardsUnit | external Passed No Issue

Address

11 | Claim external Passed No Issue
12 | GetStakingAddressList read Passed No Issue
13 | GetStakingTokenldList read Passed No Issue
14 | SetdepositNFTToken external | access only Owner No Issue
15 | SetdepositToken external | access only Owner No Issue
16 | SetdepositAddress external | access only Owner No Issue
17 | SetRewordToken external | access only Owner No Issue
18 | DepositRewordToken external | access only Owner No Issue
19 | SetStakingEndTime external | access only Owner No Issue
20 | SetStakingDeadTime external | access only Owner No Issue
21 | UnStakeByOwner external | access only Owner No Issue
22 | WithDraw external | access only Owner No Issue
23 | RewardPerERC20Token read Passed No Issue
24 | InsertStakingAddressList write Passed No Issue
25 | DeleteAllTokenList write Passed No Issue

MasterChef.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Visibility for constructor Refer Audit

is ignored Findings

2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 [transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | poolLength read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

8 |fund write Function input Refer Audit
parameters lack of Findings
check, Critical operation
lacks event log
9 |[add write Same LPToken can be Refer Audit
added more than once, Findings
Function input
parameters lack of
check,Critical operation
lacks event log
10 | set write Critical operation lacks Refer Audit
event log Findings
11 | deposited external Passed No Issue
12 | pending external Passed No Issue
13 | totalPending external Passed No Issue
14 | massUpdatePools write Critical operation lacks Refer Audit
event log,Infinite loop Findings
15 | updatePool write Critical operation lacks Refer Audit
event log Findings
16 | deposit write Passed No Issue
17 | withdraw write Function input Refer Audit
parameters lack of Findings
check
18 | emergencyWithdraw write Passed No Issue
19 | erc20Transfer internal Function input Refer Audit
parameters lack of Findings
check
Token.sol
Functions
Sl. Functions Type Observation Conclusi
on
1 | constructor write Passed No Issue
2 | onlyRole modifier Passed No Issue
3 | supportsinterface read Passed No Issue
4 | hasRole read Passed No Issue
5 checkRole internal Passed No Issue
6 | getRoleAdmin read Passed No Issue
7 | grantRole write Passed No Issue
8 | revokeRole write Passed No Issue
9 | renounceRole write Passed No Issue
10 | setupRole internal Passed No Issue
11 | setRoleAdmin internal Passed No Issue
12 | grantRole internal Passed No Issue
13 | revokeRole internal Passed No Issue
14 | name read Passed No Issue
15 | symbol read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

16 | decimals read Passed No Issue
17 | totalSupply read Passed No Issue
18 | balanceOf read Passed No Issue
19 [transferallowance write Passed No Issue
20 | allowance read Passed No Issue
21 | approve write Passed No Issue
22 | transferFrom write Passed No Issue
23 | increaseAllowance write Passed No Issue
24 | decreaseAllowance write Passed No Issue
25 | transfer internal Passed No Issue
26 | mint internal Passed No Issue
27 | burn internal Passed No Issue
28 | approve internal Passed No Issue
29 | spendAllowance internal Passed No Issue
30 | beforeTokenTransfer internal Passed No Issue
31 | afterTokenTransfer internal Passed No Issue
32 | burn write Passed No Issue
33 | burnFrom write Passed No Issue
34 | snapshot internal Passed No Issue
35 | getCurrentSnapshotld internal Passed No Issue
36 | balanceOfAt read Passed No Issue
37 | totalSupplyAt read Passed No Issue
38 | beforeTokenTransfer internal Passed No Issue
39 | valueAt read Passed No Issue
40 | updateAccountSnapshot write Passed No Issue
41 | updateTotalSupplySnapshot write Passed No Issue
42 | updateSnapshot write Passed No Issue
43 | lastSnapshotld read Passed No Issue
44 | snapshot write access only Role No Issue
45 | mint write Unlimited minting Refer
Audit
Findings
46 | AirDrop write access only Role No Issue
47 | beforeTokenTransfer internal Passed No Issue
IFO.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Compiler warnings Refer Audit
Findings
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 [transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

7 | setOfferingAmount write Function input Refer Audit
parameters lack of Findings
check
8 [setStartTimestamp write access only Owner No Issue
9 [setEndTimestamp write access only Owner No Issue
10 [setRasingToken write access only Owner No Issue
11 | setOfferingToken write access only Owner No Issue
12 | setCrowdsale write access only Owner No Issue
13 | setPool write access only Owner No Issue
14 | setWhiteList write Function input Refer Audit
parameters lack of Findings
check
15 | deposit write Function input Refer Audit
parameters lack of Findings
check
16 | withdraw write Function input Refer Audit
parameters lack of Findings
check
17 | harvestAndVesting write Function input Refer Audit
parameters lack of Findings
check
18 | hasHarvested external Passed No Issue
19 | hasCollateral external Passed No Issue
20 | getUserAllocation read Passed No Issue
21 | getOfferingAmount read Passed No Issue
22 | getTokenAmount internal Passed No Issue
23 | getAddressListLength external Passed No Issue
24 | finalOfferingTokenWithdraw write Function input Refer Audit
parameters lack of Findings
check
25 | release write Passed No Issue
26 | releaseAmount read Passed No Issue
27 | setAvailableReleaseFlg write access only Owner No Issue
IFOMasterChef.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | poolLength external Passed No Issue
8 |fund write Function input Refer Audit
parameters lack of Findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

check, Critical operation
lacks event log
9 |add write Function input Refer Audit
parameters lack of Findings
check, Critical operation
lacks event log
10 | set write Critical operation lacks Refer Audit
event log Findings
11 | deposited external Passed No Issue
12 | pending external Passed No Issue
13 | totalPending external Passed No Issue
14 | massUpdatePools write Critical operation lacks Refer Audit
event log, Infinite loop Findings
15 | updatePool write Critical operation lacks Refer Audit
event log Findings
16 | deposit write Passed No Issue
17 | claim write Passed No Issue
18 | withdraw write Function input Refer Audit
parameters lack of Findings
check
19 | withdrawAll write Passed No Issue
20 | erc20Transfer internal Function input Refer Audit
parameters lack of Findings
check
21 | setAvailableClaimFlg write access only Owner No Issue
Crowdsale.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Compiler warnings Refer Audit
Findings
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 | renounceOwnership write access only Owner No Issue
5 [transferOwnership write access only Owner No Issue
6 transferOwnership internal Passed No Issue
7 | fallback external Passed No Issue
8 [buyTokens write Passed No Issue
9 | release write Passed No Issue
10 [releaseAmount read Passed No Issue
11 | _preValidatePurchase internal | Compiler warnings Refer Audit
Findings
12 | postValidatePurchase internal Passed No Issue
13 | deliverTokens internal Passed No Issue
14 | processPurchase internal Passed No Issue
15 | updatePurchasingState internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

16 | _getTokenAmount internal | Compiler warnings Refer Audit
Findings
17 | forwardFunds internal Passed No Issue
18 | setRate external | access only Owner No Issue
19 | finalOfferingTokenWithdraw write access only Owner No Issue
20 | hasClosed read Passed No Issue
21 | addToWhitelist external Passed No Issue
22 | addManyToWhitelist external | access only Owner No Issue
23 | removeFromWhitelist external | access only Owner No Issue
24 | setAvailableReleaseFlg write access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity
No High severity vulnerabilities were found.

Medium

(1) Same LPToken can be added more than once: MasterChef.sol

The owner can add the same Iptoken more than once.

Resolution: We suggest putting validation for duplicate Iptoken while adding into the pool.

Low

(1) Function input parameters lack of check:
Variable validation is not performed in below functions:
IFO.sol

e setWhitelList = whitelListaddress

e deposit=_amount

e withdraw = _amount

e harvestAndVesting = _amount

e finalOfferingTokenWithdraw = stageSecond

e setOfferingAmount = _offerAmount
MasterChef.sol

e add=_IpToken

e erc20Transfer=_to

e fund = _amount

e withdraw = _amount
IFOMaster.sol

e add = _|IpToken

e erc20Transfer= _to

e fund = _amount

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e withdraw = _amount

Resolution: We advise to put validation like integer type variables should be greater than

0 and address type variables should not be address(0).

(2) Critical operation lacks event log:
Missing event log for:
MasterChef.sol

e fund

e add

o set

e updatePool

e massUpdatePools
IFOMaster.sol

e fund

e add

e set

e updatePool

e massUpdatePools

Resolution: Write an event log for listed events.

(3) Infinite loop:
In below functions ,for loops do not have pid length limit , which costs more gas:
MasterChef.sol
e massUpdatePools.
IFOMaster.sol
e massUpdatePools.

Resolution: Upper limit should have a certain limit in for loops.

Very Low / Informational / Best practices:

(1) Unlimited minting: Token.sol

Minter can mint unlimited tokens.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We suggest putting a minting limit.

(2) Immutable variables:

These variable values are set in the constructor & will be unchanged:

IFO.sol

stable, offeringToken, collateralToken, startTimestamp, endTimestamp, wallet,
depositFeeBP

MasterChef.sol

rewardPerSecond, erc20 , startTimestamp, endTimestamp, feeAddress
IFOMaster.sol

rewardPerSecond, erc20 , startTimestamp, endTimestamp, feeAddres.
NFTStaking.sol

rewardRate, stakingStartTime, expectationStakeTokenCnt, expectationEmissionTokenCnt

Resolution: We suggest setting all variables as immutable.

(3) Compiler warnings:

CrowdSale.sol

Function state mutability can be restricted to pure.

Resolution: We advise adding "pure" keywords.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We advise to remove the "view" keyword and add "pure" keyword.

This declaration shadows an existing declaration.

Resolution: We advise to change the variable name from _firstReleaseRate to

_firstReleaseRate1.

IFO.sol

This declaration shadows an existing declaration.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We advise to change the variable name from _firstReleaseRate to

_firstReleaseRate1.

MasterChef.sol

Resolution: Warning: Visibility for constructor is ignored. If you want the contract to be

non-deployable, making it "abstract" is sufficient.

(4) SafeMath Library: MasterChef.sol

SafeMath Library is used in this contract code, but the compiler version is greater than or
equal to 0.8.0, Then it will be not required to use, solidity automatically handles overflow /
underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

(5) Language Consistency: IFO.sol, NFTStaking.sol

Comment in Chinese and English Language.

Resolution: Consistency, Use the same language for all comments.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(6) Variable set by hardcoded values: NFTStaking.sol

1646892880 ;

stakingStartTime has been set by hardcoded values.
Resolution: Consider to set it by proper value while deploying.

(7) Integer variable initialized by zero: NFTStaking.sol

stakingCount = 0; // EB.40 Cannot be changed

The stakingCount is initialized by 0.

Resolution: We suggest removing this line from the constructor as the integer variable’s

default value is 0. So no need to initialize by 0.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e SetdepositNFTToken: NFTStaking owner can change the NFT contract address.

e SetdepositToken: NFTStaking owner can change deposit fee contract address and
value.

e SetdepositAddress: NFTStaking owner can change the address to send the deposit
fee.

e SetRewordToken: NFTStaking owner can reward change of contact address.

e DepositRewordToken: NFTStaking owner can deposit the reward in the contract.

e SetStakingEndTime: NFTStaking owner can change the staking end time.

e SetStakingDeadTime: NFTStaking owner can change the staking dead time.

e UnStakeByOwner: NFTStaking owner can force unStake by owner account.

e WithDraw: NFTStaking owner can withdraw reward from contract.

e add: MasterChef owners can add the same LP token more than once.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

e set: MasterChef owners can update the given pool's ERC20 allocation point.

e setOfferingAmount: IFO owner can set offering amount.

e setStartTimestamp: IFO owner can set start timestamp.

e setEndTimestamp: IFO owner can set end timestamp.

e setRasingToken: IFO owner can set rasing token.

e setOfferingToken: IFO owner can set offering token.

e setCrowdsale: IFO owner can set crowd sale value.

e setPool: IFO owner can set ifo MasterChef address and specific pool for call some
function value.

e setWhiteList: IFO owner can set whiteList address and rate.

e finalOfferingTokenWithdraw: IFO owner can withdraw after the end of all sale,
withdraw all offering tokens.

e setAvailableReleaseFlg: IFO owner can set available release flg status.

e add: IFOMasterChef owner can add a new Ip to the pool.

e set: IFOMasterChef owner can update the given pool's ERC20 allocation point.

e setAvailableClaimFIlg: IFOMasterChef owner can set available release flg status.

e setRate: Crowdsale owner can set private sale rate and public sale rate.

e finalOfferingTokenWithdraw: Crowdsale owner can withdraw after the end of all
sale, withdraw all offering tokens.

e addManyToWhitelist: Crowdsale owner can add list of addresses to whitelist.

e removeFromWhitelist: Crowdsale owner can remove single address from whitelist.

e setAvailableReleaseFIlg: Crowdsale owner can set available release flg status.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of files. And we have used all possible tests
based on given objects as files. We have observed some issues in the smart contracts.
So, the smart contracts are ready for the mainnet deployment after fixing those

issues.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

@ rercrzr

IERCTES

o Qi balanceOf()

@ Qownearor)

@ safeTransferFrom()
@ transterFromi)

@ approvel)

@ setfApprovalFor AN
= QugetApproved()

@ QisspprovedF oradi)

—

NFTStaking Diagram

Code Flow Diagram - GaiaStarter Protocol

MFTStaking

Oamabile

O w256 stakingDeadTime

o WM2S5E6 expectationStakeTokenCrt

O WM 256 expectationEmissionTokenCrt

O WM2S6 stak

O address stakingAddressList

O address=>null stakingAddress_tokenlds
O uiMZ2S5=>unt 255 tokenid_timeStamp

o ___constructor ()

@ Stake()

-)

o OuGetClas cs AN

@ OuGetClasmableRewardsUnitAddress()
@ Claimd)

® ACerStakingAddressList()
® QCetStakingTokenidList()
b

ERC20

Context
IERCZ20
IERC20OMetadata

O address=>uim256 _balances

O address=>mapping address=>uima256 _allowances

O uint 256 _totalSupply
O string _name
O string _symbol

-'\.I‘J...'
@ rerciss

@ OQuesupportsimnerface()

__constructor__({)

!

egﬁ
e

transferFromi)

mcreaseAllovwance()

decreaselllowance()

_transfer()

_mimt)

_burn}

_approve()

¢ _spendilowance()
_beforeTokenTransfer()

O _afterTokenTransfer()

000D00000000000
£
5
8

/

& transferDwnership()
O _transferCwnership)

T

| |@ rerczometacata

IERCZ0

- O named)
- Qusymbal()
| o Soecimals()

StotalSupply()
SbalanceOf()
transfer()
Dallowance()
approve()
transferFromi)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

MasterChef Diagram

@ masterChef

Ownable
WSafeMath for wint256
mSafeERCE0 for IERC2Q

IERC20 erc20

Uit 256 paidCut

uint256 rewardPerSecond

uint256 totalRewards

Poolinfo poolinfo

uint256==mapping address==Userinfo userinfo
uirt256 total&llocPoint

uint256 startTimestamp

uint256 endTimestamp

address feeAddress

IERCZ0

@ CiotalSupply()
@ O balance0fi)
@ transfer()

¢gd0oosOoO0CGBOORS|CC00QQ0O0000

_ constructor__ ()
Q poollength()

Qceposited()
Qpending()
QtotalPending()
massUpdatePools()
updatePool()

deposit()

withelrawi})
emergencyWWithdraw)

< erc20Transfer()

@ Qallowance()
2 approvel)
@ transferFrom()

v !

/ I \

f
; for uint256

4 |

(&) satentath |

< GtryAdd)
2 QtrySub)
2 Oty M)

o QiryDiv()

< StryMod()
= Quadd()

o Qusubl)

< Gumuld)

< Beliv()

o Gumod()

‘for IERC20

V

® SafeERC20 l

mAddress for address

< safeTransfer()
© safeTransferFrom()

O address _owner

< safefpprovel)
“ safelncreaselllowance)
“ safeDecreasefllowance])
B _calOptionalReturni)

T

< _transferOwnership()

& _ constructor__ ()
@ Qowner()

@ renounceXwnershipl)
@ transferOwnership)

Ifor address
|

V
® Address

< QuisCantract()

< sendvaluel)

“ functionCall()

2 functionCallith' alus()
G functionStaticCall
< functionDelegateCall])
< QuverifyCalResult(y

@ éuntext

oG _msgSender()
o O_msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

=

@ AptassConiral

HrressContral
ERCIGT

@ ERC165
@ QnasPole()
& CygetfinksAdmn]| JERCTES
& gramFois))
A ——— & Sgupporizinteriesce()
bl ol

@ iercies

© Saupparisiierfaca)

Token Diagram

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(® Token
ERCID
EACI0Bumable
ERCIGnspabal
ActeseCastrnl @ Stringa (@) patr
O bylea1d _HEX SYMBULS = ey
© bytes3d SHAPSHOT ROLE o e —— & Bumind
7 Byteal MIVTER ROLE = Sitngl) gk S
© OsHexSingl] =i
o _conwtrucior_() o
 wropshe(]
& mrd{}
» i
O _betreTokenTrarmien)
/ |
. @ ERC203Rapshot
[ERCED
| e dor 2
; #hGounters fr Cauers Gounler
(€ ercaiaumaniel | T T T
o
Coumesf | O Counters Coume _cureniSrapshosid
£RCID
©_snapshati)
LR - O_geCurrertSnadhotial)
& purrFromi) | © QbwlancrDIM])
. o Gl Samly M |
{ befere Token Transfer|)
| BTy}
| | L] £}
| | B _updabeTolalSupglySrapahot)
| 1 [W _upidatsSnapshat()
| | B 0, Snapsholkd()
| ! | " \
| _ for aint256 . for Counters: Countar
| ' | '.'il.' [| A)
| @ ERCID .
| ot !
| R g
| A Mt - b
| 1]
L 5
[D admaorels® balnces ! \
O gk esm=rmapyeny) st essninl i _siewances ! !
| B w358 _folafSupply ' \
| O gring _name ' <
[0 wring _mymiiol
© _comsbructor_{) I"'_"| @cnm
| o, x5
® Snanel} @® arons
Eimymboif} yyep—
| L w:l © cramant(}
® CyioeaiSLppi|) ¢ S hndpperBound]) © tecriartt!
| ® Synainncedl) & roeeh]
& wanater()
[® Dlewance()
o mpprovel|
| & pransferFrom|]
B norasse Swance||
| o decrensedinaance)
" _transter()
& _inl()
l * jrni}
- mpprovel)
Lo
I © _oetareTokenTrarstern|)
| | _aferTokenTransten])
\ !
| | Ly
|
| | @ rercaomemans
|
|| Emcae
8 Cramme()
& Osymbol()

IFO Diagram

@© ro

ReestrancyGuard
Dwnatis
nSateMalh for uinf258
IESIRERCIO far IERCIE
© ERCI0 staie
O ERCH0 offerrgTaken
C FOMasterChal farm
() rFomastercnet © rE258 siarTimestamp
0 Wink256 erdTimestamg
Dwnaine o oAPeringAsaLT
(=]
mSaleMath far umil S8 O ERCI0 collaberalToken
IAWER G0 fev (ERCID O uirr 256 reguirecdC olialar sl Amourl
o rote:
0 [ERC20 erc20 O w18 depositFeeBP
O el Z5E paOul O gtk assUipwintn userinfe
O k256 rewarPerSacand o addrevaLin
Ui 25S totaFewards = podressecumt & winlelistAddress] st
& Poglnfa pooinia D16 _whitel =t Addreesl isiCourd
usarindp Okl _totalhieLisiRaie
1 w258 toisldlocPoim o bocl avaiablefeieasefig
0 w258 stariTinesdamp O e e ponl
0 Al 258 andTimestmmp o U250 pid
0 ool O podress project
0 addrass fesdddress O gk st wallsl
o croavohiais
S enatrctor_0) © Wt _lociTime
5 ClpiL argghi} O w256 _westingDuralion
s m' o WtI5h _freiFsisaseRale
© sel) o pocresseodissrinta \esing userinfs_Yesting
o O epoated] & __eonstructor ()
® O pending) & metOfferngAmount()
B SiotaParcing) © gElSla Timegtamp()
& masslipiataPonie) & metEnd Timestamg])
& updmtefooj & setftasngTokben()
& deposk() & welOiffering Token(}
© chakn() & malCrowdsalei)
o witheraw() & getPoo)
& withdrma) @ pelihitaListl)
O e 20Tranafenl) B deposi()
© st valabieCimFigl) b 1
e & harvestingestng]|
/ \ & QhasHarvestan)
L i & QhasColsennl)
i I b & CugeUser Alocalion()
i i L]
o | 'I ‘: g TokenAmaurd()
J Y & FralfenngT ok Vihdraw)
! ' = redeae)
; ' & Qreleasedmourt])
I. o | ® amtAvaishieFelaaseFigi
! . - ' "
tfor wintd5E [- =~ forumi?58 for [ERC20 Jfor IERG20 |
.- :"“.-' K A - b \
- 1 [> \
@ Cwnable .7
&) saterc2
iyt P @ Reenrancyluard
* safeTransder]) O w255 NOT_ENTERED:
e * wadeTransferFrom) U wri=6_ENTERED
L E;uu\ﬂ:l-t_ﬂ * madefipprovel) 0 U256 _pisius
& Spwnar() padaincreane Alowancel)
& rencunzeCwrership) * sateDecreaseddawancel) © __oenstructor_{)
o tranwfer Cwnershi) B _calOphoralfstum()
7 _tranwferQwnarship)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

IFOMasterChef Diagram

@ IFOMasterChef [

Cwnabile

mSafeMath for Wint256
WSafeERCE0 for IERC20Q

[ERC20 erc20

uirt256 paidOut

uint256 rewardPerSecond

uint256 totalRewards

Poclinfo poolinfo

uint258=>mapping address==Userinfo userinfa
uint256 total&llocPoint IERC20
uint256 startTimestamp -
uint256 endTimestamp
ool availableClaimFlg
acldress feelddress

@ OiotalSupply()
@ Qhalance0f()
@ transfer()
_ _constructor__ () @ Qalowancel)
O poollengthi) @ approvel)
fund() @ transferFrom()

Qdeposited()
pending()
QtotalPending()
massUpdatePools()
updatePool()
deposit()

claimi(’)

withdrawi)
withielraw Al

o erc20Transfer()
setAvailableClaimFlgl)

r

'3

for uinio58 for IERC20

%]

0o 0cSOO0aBO0ODe | OC0C000QQ00000

@

V

, {

@Safe'""’"m @ ownahle
@ SafeERC20

o Qtryadd() Context

< QtrySub() inAddress for address

S Gtryhull) o T
2 QtryDiv() * safeTransfer()

O address _owner

. “r safeTransferFrom() 1
x &tr;:lcd() < safefpprove() 2 _ constructor__[)
:\ Q:ubg < safelncreasedllowancer) @ Qowner()

\’ amul() “* safeDecreaseAllowance) @ renouncelwnershipl)
& Qivl) B _calOptionalReturni) @ transferOwnership()
© Qmod() : “ _transferOwnershipl)

e
|
i
Ifor address
Vi
Y
@ Address w
| \j
< QiisContract() @ Context

“ sendWaluel)

= functionCall()

“F functionCallith ' alue)
O functionStaticCall()
“ functionDelegateCall)

O QuverifyCallResult))
.

<& G,_msgSender()
o G,_megDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Crowdsale Diagram

@ Crowdsale

Ownable
SafeMath for wint256

IERCZ20 token
IERC20 rasingToken
address project
address wallet

uint256& openingTime
uint255 closingTime
uint256 closingTime2
address ifol

address ifo2
address=-bool whitelist
uint256 _lockTime

uint255 _wvestingDuration
bool _availableReleaseFlg
uint256 _firstReleaseRate

address==Userinfo_Vesting userinfo_\esting

IERC20

@ SafeERC20

o SQtotalSupply()
@ QbalanceOf()
@ transfer()
@ Qallowance()
@ approve()
@ transferFrom()

_ constructor__ ()
buyTokens()

release()

@ Qreleasefmount()

o _prevalidatePurchase()
“ _postValidatePurchase()
_deliverTokens()

“ _processPurchase)

2 _updatePurchasingState()

0, _getTokenAmount()

“ _forwardFunds()

@ setRatel)

@ finalOfferingTokerithodrawi)
@ QhasClosed()

2 addTaWhitelist()

@ addMany Tovwhitelist()

@ removeFromWhitelist()

2 setAvailableReleaseFlgl)

880 |cO000D0CQOOQCOQOO0000D00000

R

bl

mAddress for address

,Ifor wint256

V

@ Safelath

2 OtryAdd()
< OirySubi)
O Ctryhuly
0 OtryDivi)

O address _owner

< QtryMod()
< Qadd()
o Qusubi)
O Gumully
< adivi)
o Cymod()

@ _ constructor__ ()
@ Qowneri)

@ renouncelwnership)
2 transferOwnership)
< _transferQwnershipi)

@ C:untext I

i
<> O _megSender()
o O_msgDatai)

~r safeTransfer()

“ safeTransferFrom()

< safelpprove()

< safelncreasebllowance()
“ zafeDecreaselllowancel)
B _calOptionalReturni)

for address

@ Address

< QuisContract()

o gendValuel)

< funetionCall()

o functionCalhvith'alued)
< GfunctionStaticCall)
= functionDelegateCall()
< QuerifyCalResult()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> NFTStaking.sol

Slither log >> MasterChef.sol

:Detectors:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

8 with 75 detectors), 41 result{s}) found

Slither log >> IFO.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Slither log >> IFOMasterChef.sol

:Detectors:

Slither log >> Crowdsale.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

NFTStaking.sol

Security

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in NFTStaking.Stake{uint256(]): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this

static analysis.

Pos: 747:52:

Gas costs:

Gas requirement of function NFTStaking.Claim is infinite: If the gas requirement of a function i
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 899:50:

Miscellaneous

Constant/View/Pure functions:

FTStaking.InsertStakingAddressList{address) : Potentially should be constant/view/pure but is not

MNote: Modifiers are currently not considered by this static analysis.

Pos: 1092:893:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in

your code). Use "require(x)” if x can be false, due to e.g. invalid input or a failing external component

Pos: 1006:78:

MasterChef.sol

Block timestamp:
Lise of "block.tmestamp”: "block.timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose” the block.tmestamp, to a certain degree, to change the outcome of

a transaction in the mined block

Paos: 783:76:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

% Economy

Gas costs:

Gas requirement of function masterChef fund is infinite: if the gas requirement of a function 1s higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 731:11:

Guard conditions:

Uise "assert{x)" if you never ever want x to be false, notin any circumstance (apart from a bug in

your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.

Pos: 744:96:

Token.sol
s & Economy

Gas costs:

Gas requirement of function Token.AirDrop is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1109:4:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can
ause the complete contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to

such functions to make it successful.

Miscellaneous

Constant/View/Pure functions:
Token._beforeTokenTransfer(address,.ad 5,uint256) : Potentially should be constantiview/pure

but is not. Note: Modifiers are currently not considered by this static analysis.

Pos: 111

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in

your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.

Security

Check-effects-interaction:
Potential wiolation of Checks-Effects-Interaction pattern in IFO harvestAndVesting (uint256): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this

static analysis

Gas costs:

Gas requirement of function IFOharvestAndVesting is infinite: If the gas requirement of a function Is
higher than the block gas Limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1565:58;

Miscellaneous

Constant/View/Pure functions:

IFO.finalOffering TokenWithdraw{address) : Potentially should be constant/view/pure but is not

Mote: Modifiers are currently not considered by this static analysis.

| P 19 -
Pos: 1637:1:

Guard conditions:

se "assert(x)” if you never ever want x to be false, not in any circumstance (apart from a bug in

your code). Use "require(x)” if ® can be false, due to e.g. invalid input or a failling external component.

IFOMasterChef.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Check-effects-interaction:
Potential viclation of Checks-Effects-Interaction pattern in
IFOMasterCheferc20Transfer{addrass, uint256): Could potentially lead to re-antrancy vulnerability

MNote: Modifiers are currently not considered by this static analysis.

Pos: 927:34:

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose" the block timestamp, to a certain degree, to change the outcome of

a transaction in the mined block

Pos: 753:73

s & Economy

Gas costs:

Gas requirement of function IFOMasterChef.fund is infinite: If the gas requirement of a function i
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 739:4:

Miscellaneous

Constant/View/Pure functions:

Dy

IFOMasterChef.updatePool{uint256) : Potentially should be constant/view/fpure but is not. Note

Modifiers are currently not considered by this static analysis

Pos: B26:34:

Guard conditions:

Use "assert{x)" if yvou never ever want x to be false, nat in any circumstance (apart from a bug in
your code). Use "require(x)” if x can be false, due to e.g. invalid input or a failing external compor

Crowdsale.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Security

Check-effects-interaction:

Potential violation of Checks-Effects-interaction pattern in Crowdsale.buyTokens(address,uint256)
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by

this static analysis.

Pos: 781:2

Block timestamp:

Use of "block.imestamp™: "block.timestamp™ can be influenced by miners to a certain degree. That
means that a miner can "choose” the block.imestamp, to a certain degree, to change the outcome of

a transaction in the mined block.

Pos: 783:43;

Gas & Economy

(Gas costs:

Fallback function of contract Crowdsale requires too much gas (infinite). If the fallback function
requires more than 2300 gas, the contract cannot receive Ether.

ac T T9:9:
P o Seds

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can
cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs, Carefully test how many items at maximum you can pass to

such functions to make it successful.

Pos: 1008:34:

Miscellaneous

Guard conditions:

I any circumstance

imwvalid input or a faili

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

Solhint Linter

NFTStaking.sol

NFTStaking.sol:42 8: Error: error: missing
NFTStaking.sol:454:18: Error: se error: missing

NFTStaking. :503: : Error: error: missing
NFTStaking. :554:22: Error: error: missing

MasterChef.sol

MasterChef.sol: :18: Error: ~se error: missing
MasterChef.sol: :18: Error: e error: missing
MasterChef.: : : : Error: se error: missing
MasterChef.sol: :18: Error: Pars error: missing

Token.sol

Error: Parse error: missing
Error: Parse error: missing

IFO.sol

Error: P error: missing
Error: 'se error: missing
Error: se error: missing

IFOMasterChef.sol

IFOMasterChef. :161:18: : 'se error: missing
IFOMasterChef. :184:18: :) error: missing
IFOMasterChef. 3¢ :18: : e error: missing
IFOMasterChef.: 2 :18: : se error: missing

Crowdsale.sol

Crowdsale.sol: 4:18: Error: Parse error: missing ';'

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Crowdsale. : : : "Or: { : missing

Crowdsale. : 2 : or: sSe 3 : missing

Overall Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

@therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

