@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Flinch NFT Token
Website: https://flinchthemovie.com
Platform: Ethereum

Language: Solidity

Date: May 25th, 2022

https://flinchthemovie.com

Table of contents

Introduction

... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 15
(@ 0] 1Y/ =1 1 T To [o] 0T) 16
DISCIAIMEIS ... e 18
Appendix
o Code FIoW Diagramououoiiii s 19
o Shther RESUIS LOGuiiiiii e 20
e Solidity staticanalysis ... 22
® SOININt LiNtEr oo 24

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Flinch NFT team to perform the Security audit of the
Flinch NFT smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on May 25th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
e Flinch NFTs intend to advance the art and craft of storytelling in Web3 by utilizing

airdrops, staking and gamification to create valuable experiences for holders.

e The Flinch NFT is a NFT token contract which allows withdraw, mint, burn.

e The Flinch NFT contract inherits the Ownable, MerkleProof standard smart
contracts from the OpenZeppelin library.

e These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope
Name Code Review and Security Analysis Report for
Flinch NFT Token Smart Contract
Platform Ethereum / Solidity
File Flinch.sol
File MD5 Hash 4899301EC39C1EC1753E2ABA1CD0OA6GBD
Updated MD5 Hash 95E163D5611B39B18D67A054D846C212
Audit Date May 25th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/KronicLabz/Flinch-NFT/blob/main/Flinch.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation
Tokenomics: YES, This is valid.
o Name: Flinch NFT
e Symbol: FLN

e Maximum Supply: 9999

e Maximum Public Mint: 6

e Maximum Hitlist Mint: 3

e Public Sale Price: 0.065 ETH
e Hitlist Sale Price: 0.05 ETH

Ownership Control: YES, This is valid.
e Owner can set the token URI and
PlaceHolder URI.

e Owner can set a merkle root value.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues

Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Flinch NFT Token are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Flinch NFT Token.

The Flinch NFT Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a Flinch NFT Token smart contract code in the form of a Github weblink.

The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. But the code is straightforward
so it is easy to understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://flinchthemovie.com which

provided rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://flinchthemovie.com

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 startTokenld internal Passed No Issue
3 | totalSupply read Passed No Issue
4 totalMinted internal Passed No Issue
5 | supportsinterface read Passed No Issue
6 | balanceOf read Passed No Issue
7 numberMinted internal Passed No Issue
8 numberBurned internal Passed No Issue
9 getAux internal Passed No Issue
10 | setAux internal Passed No Issue
11 | ownershipOf internal Passed No Issue
12 | ownerOf read Passed No Issue
13 | name read Passed No Issue
14 | symbol read Passed No Issue
15 | tokenURI read Passed No Issue
16 | baseURI internal Passed No Issue
17 | approve write Passed No Issue
18 | getApproved read Passed No Issue
19 | setApprovalForAll write Passed No Issue
20 | isApprovedForAll read Passed No Issue
21 | transferFrom write Passed No Issue
22 | safeTransferFrom write Passed No Issue
23 | safeTransferFrom write Passed No Issue
24 | exists internal Passed No Issue
25 | safeMint internal Passed No Issue
26 | mint internal Passed No Issue
27 | transfer write Passed No Issue
28 | burn internal Passed No Issue
29 | approve write Passed No Issue
30 | checkContractOnERC721R write Passed No Issue
eceived
31 | beforeTokenTransfers internal Passed No Issue
32 | afterTokenTransfers internal Passed No Issue
33 | owner read Passed No Issue
34 | onlyOwner modifier Passed No Issue
35 | renounceOwnership write access only Owner No Issue
36 | transferOwnership write access only Owner No Issue
37 | transferOwnership internal Passed No Issue
38 [callerlsUser modifier Passed No Issue
39 | mint external Passed No Issue
40 | hitlistMint external Irrelevant error Refer Audit
message Findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

41 | teamMint external access only Owner No Issue
42 | baseURI internal Passed No Issue
43 | tokenURI read Passed No Issue
44 | setTokenUri external access only Owner No Issue
45 | setPlaceHolderUri external access only Owner No Issue
46 | setMerkleRoot external access only Owner No Issue
47 | getMerkleRoot external Passed No Issue
48 | togglePause external access only Owner No Issue
49 | togglehitlistSale external access only Owner No Issue
50 [togglePublicSale external access only Owner No Issue
51 | toggleReveal external access only Owner No Issue
52 | withdraw external Hard coded Values, Refer Audit
Extra transfer code Findings
while withdraw

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.
High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low
No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Hard coded Values:

T

function withdraw() external onlyOwner{
//70% to utility/Flinch Franchise Project Wallet
uint256 withdrawAmount 70 = address(this).balance * 70/100;
//25% to inverstor/Arbor Pictures Wallet
uint256 withdrawAmount 25 = address(this).balance * 25/100;
//5% to project/Community Wallet
uint256 withdrawAmount 5 = address(this).balance * 5/100;

payable(8x1333e81C131e1D1DRESBd42ecASE4A5aCdBcELIDe3) . transfer (withdrawAmount 7@} ;
payable(@x@8bDc77727433Bb7507D782Ch1a4aBa35987659f) . transfer (withdrawAmount 25);
payable(@x10C8C5F712101d1C285C7DF88b777565ED9C7431) . transfer (withdrawAmount 5);

payable(msg.sender).transter(address(this).balance);

In the withdraw function there are sets of 3 wallet addresses as hard coded.

Resolution: Deployer has to confirm before deploying the contract to production.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Irrelevant error message:

function hitlistMint(bytes32[] memory _merkleProof, uint256 _quantity) external payable callerIsUser{

require(hitlistSale, "Flinch NFT :: Minting is on Pause");

require((totalSupply() + _quantity) <= MAX_SUPPLY, "Flinch NFT :: Cannot mint beyond max supply™);
require({totalHitlistMint[msg.sender] + _quantity) <= MAX_HITLIST_MINT, “Flinch NFT :: Cannot mint beyond whitelist max
require(msg.value »= (HITLIST_SALE_PRICE * _guantity), "Flinch NFT :: Payment is below the price”);

//create leaf node

bytes32? sender = keccak256(abi.encodePacked(msg.sender));

require(MerkleProof.verify(_merkleProof, merkleRoot, sender), "Flinch NFT :: You're not on the Hitlist.");

totalHitlistMint[msg.sender] += _quantity;
_safeMint(msg.sender, _quantity);

Irrelevant error message in error message in Functions hitlistMint(). “whitelist” word
should be hitelist.

Resolution: We suggest using relevant words.

(3) Unused variable:

The

re is a "pause" variable defined and set by the owner but not used anywhere.

Resolution: We suggest removing unused variables from the code.

(4) Extra transfer code while withdraw:

r

function withdraw() external onlyOwner{

//70% to utility/Flinch Franchise Project Wallet

uint256 withdrawAmount 7@ = address(this).balance * 7@/100;

//25% to inverstor/Arbor Pictures Wallet

uint256 withdrawAmount 25 = address(this).balance * 25/100;

//5% to project/Community Wallet

uint256 withdrawAmount 5 = address(this).balance * 5/100;
payable(8x1333e81C131e1D1DAESBd42ecASE45aCd@cE1De3) . transfer (withdrawAmount 7@);
payable(@x08bDc77727433Bb7507D782Cb1a4aBa35987659f) . transfer(withdrawAmount 25);
payable(@x10C8C5F712101d1C285C7DF88b777565ED9C7431) . transfer (withdrawAmount 5);
payable(msg.sender).transter(address(this).balance);

In the withdraw function, 100% balance has been distributed among 3 wallets. So after

that

there will be nothing to transfer to the owner.

Resolution: We suggest removing the last line of the withdraw function.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e teamMint: Owner can mint from address.

e setTokenUri: Owner can set token URI.

e setPlaceHolderUri: Owner can set placeholder URI.

e setMerkleRoot: Owner can set merkle root value.

e togglePause: Owner can toggle pause status.

e togglehitlistSale: Owner can toggle hitlist sale status.
e togglePublicSale: Owner can toggle public sale status.
e toggleReveal: Owner can toggle reveal status.

e withdraw: Owner can withdraw the token.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We have not observed major issues. So, it’'s good to go for the

production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed smart contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

(&) FiinchnFT

BAStrings for wint258

M SUPPLY

MY PUBLIC MINT

M2 X _HITLIST _MINT

PUBLIC _SALE_PRICE

56 HITLIST_SALE_FPRICE
baseTokenUri

string placeholderTokenUri

bool IsRevealsd

bool publicSale

bool hitlistSale

bool pause

EN =gy =]
ERINININ NN

“ |CICICIEC

K

bytes32 merkleRoot
cdres: Uint256 totalPul

Code Flow Diagram - Flinch NFT Token

@ MerkleProof

(@) 1erRCT21Receiver

< Quverify ()

@ oNERCT21Received() < A processProof()

Uint256 totalHitlistiint

e|000000QQQ0O00000

__constructor__ ()
= @mint()
@ @ hitlisthint ()
@ teambirt)
o | e _kassURIO
- @ QtokenURIC)
< @ setTokenUri()
@ setPlaceHolderUri()
- @ setMerkleRoot()
.» @ QgetMerkleRoot()
- © togglePause()
o @ togglehitistSale()
N @ togglePubklicSale()
® toggleReveal()
, @ withcraw])

-
’
’

= O, _efficiertHashi)

= Eél::?zhm

Centext
ERCIBS

IERCT2T
IERCT21Metadata

BuAdcress for address
anStrings for wint256

Nt256 _currentindss:
956 _burnCounter

i
i
string _name
=t
ui

ring _symibol
Nt2S6==TokenDwnership _ownerships
O address==AddressData _addressData
O uintZSE=>address _tokenApprovals

0O acddress

90000

Mapping address==bool _operatorApprovals

]

__constructor__()
< O _startTokenld()

® AfoctalSupply()

< o _totalMinted()

@ Qusupportsinterface()
© Gbalance o)

G _numberMinted()
O Q_numberBurned()
< O _getAuxid

for uint256

@ setApprovalForall)

@ QisApprovedForall()

@ transferFromi)

@ safeTransferFromi)
< | a_exists()

- < _safelMint()

- < _mintg)
= _transfer()
. O _burnd)
. = _approve()

. = _checkContractOnERC721Received()
- < _peforeTokenTransfers()
< _afterTokenTransfers()

o T

@ Ownable

Context

O address _owner

© __constructor__()
@ Qowner()

@ renounceCwnership()
@ transferOwnershipl)
< _transferOwnership)

r 'for address

v
@ Address

@ Strings

| (@) iercT21Metadsata \

< QuisContract()

< QtoStringl)
<< AtoHexString()

O bytes16 _HEX_SYMBOLS

O sendvalue()

2 functionCall()

< functionCTallWith'Walue()
< @ functionStaticCall()

< functionDelegateCall()
< QuverifyCallResultl)

| IERCTZ21

@ Qrname() |
@ Qeymbol() |
@ XtokenURIO |

(&) ERci1ss

IERCT16S

= Qsupportsinterface()

-

| (X rercrar
1 JERC165

| @ QbalanceOf()
| @ QownerO i)

| @ safeTransferFromi)

| @ transferFrom()

| @ approve()

| @ QgetApproved()

| @ setApprovalForAll)
@ QisfpprovedForall()

\ ..h/ -
(X rerc1es

@ Qsupportsinterface()

@ Context

O & _msgSender()
Q4 _msgDatal)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> Flinch.sol

INFO:Detectors:
Variable 'ERC721A._ checkContractOnERC721Received(address,address,uint256,bytes).retval (Flinch.sol#565)' in ERC721A._checkCont
tOnERC721Received(address,address u1nt;5t,bvt95| IFllnch s0l#559-576) potantlallv used before declaration: retval = IERC721Re
ver({to).onERC Received. 5919c10| (Flinch.sol#566
Variable 'ERCTElA._checkContractDnERCa;lRecelu (address,address,uint256,bytes).reason (Flinch.sol#567)' in ERC721A._checkCont
tOnERC721Received(address,address,uint256,bytes) (Flinch.sol#559-576) potentially used before declaration: reason.length == @
inch.sol#568)
Variable 'ERC721A. checkContractOnERC721Received({address,address u1nt;5£,bwt95| reason {Flinch.sol#567)' in ERC721A._checkCont
tOnERC721Received{address,address,uint256,bytes) (Flinch.sol#559-576) potentially used before declaration: revert{uint256,uint
){32 + reason,mload{uint256){reason)) IFllnch sol#572)
Reference: https //github. cawa|vtlcfsllthé|f\lklftétéctar Documentation#pre-declaration-usage-of-local-variables
INFO:Detectors:
Address.verifyCallResult{bool,bytes,string) (Flinch.sol#139-157) uses assembly

- INLINE ASM {Flinch. SDl#lJo 152)
ERC721A._checkContractOnERC721Received(address,address,uint256,bytes) (Flinch.sol#559-576) uses assembly

- INLINE ASM (Flinch.sol#5
MerkleProof. ATT1c1antHashlbvt9554,bvt9554I {Flinch.sol#613-619) uses assembly

- INLINE ASM (Flinch.sol#614-618)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
Address.functionCall{address,bytes) {Flinch.sol#76-738) i rer used and should be removed
Address. functionCall({address,bytes,string) (Flinch. #) is never used and should be removed
Address . functionCallWithvalue(address,bytes,uint256) (Flinch.sol#38-94) is never used and should be remow
Address. functionCallWithValue(address, bvtns uint256,string) (Flinch.sol#96- 1 is never used and should be removed
Address.functionDelegateCall{address, bthS' (Flinch.sol#124-126) is never used and should be removed
Address.functionDelegateCalliaddress,bytes,string) [Flinch.sol#lES—l%?} is never used and should be remow
Address. functionStaticCall{address,bytes) (Flinch.sol#189-111) is never used and should be removed
Address.functionstaticCall{address,bytes,string) (Flinch.sol#113-122} 1is never used and should be removed
Address.sendValue({address ,uint256) IFllnch sol#69-74) is never used and should be removed
Address.verifyCallResult(bool,bytes,string) (Flinch.sol#139-157) is n r used and should be removed
Context._msgData() {Flinch.sol 61) is never used and should be removed
ERC baseURI() (Flinch.sol#347-34 is never used and should be removed
ERC ._burn{uin {Flinch.sols is never used and should be removed
ERC ._burn{uint256,bool) {Flinch. 3 548) is never used and should be removed
ERC721A._getAux({address) (Flinch.sol#2987-299) 15 never used and should be removed
ERC721A._numberBurned(address) (Flinch.sol# 285) is never used and should be removed

ERC721A._numberMinted{address) {Flinch.sol#2 i er used and should be rem
ERCT2 setAux(address,uint64) (Flinch. 1.) never used and should be rem
ERC721A._totalMinted() (Flinch.sol#2) is never used “and should be remo
FLinchNFT. baseURI() {Flinch.sol#719 i - used and should be removed
Strings.toHexString{uint) {Flinch. 501#49 40) r used and should be removed
Strings.toHexString(uint256,uint256) (Flinch.sol#42 is never used and should be removed
Reference: https://github. CDﬁfCIvtlcfsllthQIf\lklfDQtQCtDF Documentation#dead-code
INFO:Detectors:
Pragma version”8.8.0 (Flinch.sol#4) necessitates a version too recent to be trusted. Consider deploying with 6.6.12/8.7.6
solc-0.8.8 is not recommended for jAPIDvwant
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in Address.sendValue(address,uint256) IFllnch sol#
{success) = recipient.call{value: amoun
Low level call in Address.functionCallwithvalue(address, bytes,uint256,string) {Flinch.sol#96-187):
(success,returndata) = target.call{value: va 1U°>|data' (Flinch.sol#185)
Low level call in Address.functionStaticCall{address,bytes,string) (Flinch.sol#113-122):
{success,returndata) = target.staticcall[data} iFlinch.sol#lED}
Low level call in Address.functionDelegateCall(address,bytes,string) (Flinch.sol#128-137):
- (success,returndata) = target.delegatecall{data) (Flinch.sol#135)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Parameter ERC721A.safeTransferFrom{address,address,uint256,bytes)._data (Flinch.sol#399) is not in mixedCase
Variable ERC721A._currentIndex (Flinch.sol#239) is not in mixedCase
variable ERC721A. burnCounter (Flinch.sols) is not in mixedCase
Variable ERC721A._ownerships (Flinch.sol#247) is not in mixedCase
Parameter FlinchNFT.mint{uint256)._gquantity (Flinch.sol#690) is not in mixedCase
Parameter FLinchNFT.hitlistMint(t9554[] uint; ._merkleProof (Flinch.sol) is not in mixedCase
Parameter FLinchNFT.hitlistMint{ 56)._quantity (Flinch.sol#7080) is not in mixedCase
Parameter FlinchNF'.set'okenLrilst|1ng|. basn DknnL|1 (Flinch.sol#736) is not in mixedCase
Parameter FlinchNFT.setPlaceHolderUri{string)._placeholderTokenuri (Flinch.sol#739) is not in mixedCase
Parameter FLinchNFT.setMerkleRoot(bytes32)._merkleRoot (Flinch. sol#TJ;I is not in mixedCase
Reference: https ffglthub CDﬁfCIvtlcfsllthQIf\lklfDQtQCtDF Documentation#conformance-to- SDlljltv naming-conventions

INFO: Detectors
balance0f{address) should be declared external:

- ERCTZlA.balanceDfﬂaddress} {Flinch.sol#284-287)
name() should be declared Axtan

- ERC721A.namef()
symbol{) should be declared exte|na1

- ERC721A.symbol{) (Flinch.sol#336-338)
tokenURI{uint) should be declared external:

- ERC721A.tokenURI{uint256) (Flinch.sol#346-345)

- FlinchNFT.tokenURI{uint256) (Flinch.sol#724-734)
approve(address,uint256) should be declared external:

- ERC721A.appr (address,uint256) (Flinch.sol#3
setApprovalForAll{address,bool) should be declared Axt9|na1

- ERC721A. SQtHPPID salForAll{address,bool) (Flinch.sol#368-
transferFrom{address,address,uint256) should be declared external:

- ERC72 H.tIaHSTQIFIDﬁlajjIQSS address,uint25 (Flinch.sol#379-385
safeTransferFrom(address,address u1nt‘SC; sloulj be declared external:

- ERCTE1A.safe'ransferFrowiaddress,address,uintzSE) {Flinch.sol#387-393)
renounceOwnership{) should be declared external:

y enounceldwnership() {Flinch.sol#639-641)

transferOwnership{address) should be declared exte 8

- Ownable.transferOwnership(address) linch.sol#643-646)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-external
INFO:Slither:Flinch.sol analyzed (12 contracts thh 75 detectors), 57 result(s) found
INFO:Slither:Use https://c : d or

373)

and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Flinch.sol
Security

Transaction origin:

Use of tx.origin: "tx.origin" is useful only in very exceptional cases. If you use it for authentication,
you usually want to replace it by "msg.sender”, because otherwise any contract you call can act on
your behalf.

more

Pos: 686:16:

Block timestamp:

Use of "blocktimestamp™: "block.timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block timestamp, to a certain degree, to change the outcome
of a transaction in the mined block.

more

Pos: 529:45:

Gas & Economy

Gas costs:

Gas requirement of function ERC721A.ownerOf is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 328:4:

Gas costs:

Gas requirement of function FlinchNFT.withdraw is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 766:6:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 602:8:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Constant/View/Pure functions:

MerkleProof._efficientHash(bytes32,bytes32) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 613:4:

Similar variable names:

FlinchNFTwithdraw() : Variables have very similar names "withdrawAmount_70" and

"withdrawAmount_25". Note: Modifiers are currently not considered by this static analysis.
Pos: 774:69:

Similar variable names:

FlinchNFT.withdraw() : Variables have very similar names "withdrawAmount_70" and
"withdrawAmount_5". Note: Modifiers are currently not considered by this static analysis.
Pos: 768:8:

No return:

MerkleProof._efficientHash(bytes32 bytes32): Defines a return type but never explicitly returns a
value.
Pos: 613:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more
Pos: 701:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 725:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of {only) literal values since those
yield rational constants.

Pos: 768:36:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Flinch.sol

(o))
N

Error: Parse error: missing

Error: Parse error: missing

Error: Parse error: missing

Error: Parse error: missing

Error: Parse error: missing '; £

Error: Parse error: missing ';' at

Error: Parse error: mismatched input ';' expecting

O O O O O O
= = = = ==
N J W O 4
D O U1 ©o N

\

S
S
S
S)
S
S
S

O oW DN DN

O
S
N

Error: Parse : missing ';' at

(0)]
@]
—

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

