@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Catpay Token
Website: https://catpay.io
Platform: Binance Smart Chain
Language: Solidity

Date: March 24th, 2022

https://catpay.io

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 16
(@ 0] 1Y/ =1 1 T To [o] 0T) 17
DISCIAIMEIS ... e 19
Appendix
o Code FIoW Diagramououoiiii s 20
o Shther RESUIS LOGuiiiiii e 21
e Solidity staticanalysis ... 24
® SOININt LiNtEr oo 27

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Catecoin team to perform the Security audit of the
CatPay Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on March 24th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The CatPay Contract is a smart contract Having functions like set buy and sell taxes,

swap And Liquify, add Liquidity, etc.

Audit scope
Name Code Review and Security Analysis Report for
Catpay Token Smart Contract
Platform BSC / Solidity
File catpay-whitelist.sol
File MD5 Hash OF5D539DCC8E1391BD2039D5BCF3ECF6
Audit Date March 24th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: Catpay
e Symbol: Catpay
e Decimals: 9
e Anti Whale Amount: 500 Trillion
e Swap Tokens at Amount: 20 Trillion
e Maximum Sell Amount per Cycle: 500 Trillion
e Anti Dump Cycle: 8 hours
e Total Supply: 100 Quadrillion

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed

Function input parameters lack of check
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop

High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Catpay Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Catpay Token.

The Catpay Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Catpay Token smart contract code in the form of a File. The hash of that

code is mentioned above in the table.
As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://catpay.io which provided rich

information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://catpay.io

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | name write Passed No Issue
3 | symbol write Passed No Issue
4 | decimals write Passed No Issue
5 | totalSupply read Passed No Issue
6 | balanceOf read Passed No Issue
7 | transfer write Passed No Issue
8 [allowance read Passed No Issue
9 | approve write Passed No Issue
10 | transferFrom write Passed No Issue
11 | increaseAllowance write Passed No Issue
12 | decreaseAllowance write Passed No Issue
13 | isExcludedFromReward read Passed No Issue
14 | reflectionFromToken read Passed No Issue
15 | setTradingStatus external | access only Owner No Issue
16 | tokenFromReflection read Passed No Issue
17 | excludeFromReward write access only Owner No Issue
18 | includelnReward external Infinite loops Refer Audit
possibility Findings
19 | excludeFromFee write access only Owner No Issue
20 | includelnFee write access only Owner No Issue
21 | isExcludedFromFee read Passed No Issue
22 | setTaxes write access only Owner No Issue
23 | setBuyTaxes write access only Owner No Issue
24 | setSellTaxes write access only Owner No Issue
25 | reflectRfi write Passed No Issue
26 | takeLiquidity write Passed No Issue
27 | takeMarketing write Passed No Issue
28 | takeBurn write Passed No Issue
29 | getValues read Passed No Issue
30 [getTValues read Passed No Issue
31 | getRValues write Passed No Issue
32 | getRate read Passed No Issue
33 | _getCurrentSupply read Infinite loops Refer Audit
possibility Findings
34 | approve write Passed No Issue
35 | transfer write Passed No Issue
36 | tokenTransfer write Passed No Issue
37 | swapAndLiquify write access by lock The No Issue
Swap
38 | addLiquidity internal | Cenftralized risk in Refer Audit
addLiquidity Findings

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

39 | swapTokensForBNB write Passed No Issue
40 | updateMarketingWallet external | access only Owner No Issue
41 | updateAntiWhaleAmt external Function input Refer Audit
parameters lack of Findings
check
42 | updateSwapTokensAtAmount | external Function input Refer Audit
parameters lack of Findings
check
43 | updateSwapEnabled external | access only Owner No Issue
44 | setAntibot external [access only Owner No Issue
45 | bulkAntiBot external Infinite loops Refer Audit
possibility Findings
46 | setAllowWhitelistTrading external | access only Owner No Issue
47 | bulkPancakeSwapWhitelist external Infinite loops Refer Audit
possibility Findings
48 | updateRouterAndPair external | access only Owner No Issue
49 | updateAntiDump external | access only Owner No Issue
50 | isBot read Passed No Issue
51 [taxFreeTransfer internal Passed No Issue
52 | aidropTokens external Infinite loops Refer Audit
possibility Findings
53 [rescueBNB external | access only Owner No Issue
54 | rescueAnyBEP20Tokens write access only Owner No Issue
55 | receive external Passed No Issue
56 | owner read Passed No Issue
57 | onlyOwner modifier Passed No Issue
58 | renounceOwnership write access only Owner No Issue
59 | transferOwnership write access only Owner No Issue
60 [setOwner write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity
No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Centralized risk in addLiquidity:

addLiquidity(tokenAmount, bnbAmount)

_approve(() (router), tokenAmount);

router.addLiquidityETH{value: bnbAmount}{
(),
tokenAmount,
e,

.]

owner(},

.timestamp

In addLiquidityETH function, the owner gets Catpay Tokens from the Pool. If the private

key of the owner's wallet is compromised, then it will create a problem.

Resolution: Ideally this can be a governance smart contract. On another hand, the owner

can accept this risk and handle the private key very securely.

(2) Infinite loops possibility:
As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

depending on it will stop. We suggest avoiding loops. For example, use mapping to store
the array index. And query that data directly, instead of looping through all the elements to
find an element.
Functions are listed below:

e includelnReward

e getCurrentSupply

e DbulkAntiBot

e aidropTokens

e bulkPancakeSwapWhitelist

Resolution: Adjust logic to replace loops with mapping or other code structure.

Very Low / Informational / Best practices:

(1) Function input parameters lack of check:
Some functions require validation before execution.
Functions are:

e updateSwapTokensAtAmount

e updateAntiWhaleAmt

Resolution: We suggest using validation like variables should be greater than 0.

(2) Unused event:

UpdatedRouter(oldRouter, newRouter);

UpdatedRouter event is defined but not used in code.

Resolution: We suggest removing unused events.

(3) Two variables are set with the same values:

marketingAddress

deadAddress

There are two variables "marketingAddress" and "deadAddress" set with the same values.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We suggest set marketingAddress is different from deadAddres.

(4) Variable visibility:

There is a variable "_isPancakeSwapWhitelisted" that is defined with private. User cannot

confirm whether he is whitelisted or not.

Resolution: We suggest defining the variable with the "public" keyword. So each user can

check his own state for whitelisted.
Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e setTradingStatus: The Owner can set trending status.

e excludeFromReward: The Owner can check the account is already excluded and
set a reward token.

e includelnReward: The Owner can check that the account is already excluded.

e excludeFromFee: The Owner can set an exclude account address.

e includelnFee: The Owner can set an account address.

e setTaxes: The Owner can set taxes like (RFI taxes, marketing, liquidity taxes, burn
taxes).

e setBuyTaxes: The Owner can set buy taxes like: RFI taxes, marketing, liquidity
taxes, burn taxes.

e setSellTaxes: The Owner can set sell taxes like: RFI taxes, marketing, liquidity
taxes, burn taxes.

e updateMarketingWallet: The Owner can update the marketing wallet address.

e updateAntiWhaleAmt: The Owner can update the Anti whale amount.

e updateSwapTokensAtAmount: The Owner can update swap tokens at amount.

e updateSwapEnabled: The Owner can update swap enabled status.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

setAntibot: The Owner can set the antibot address and state.

bulkAntiBot: The Owner can bulk anti bot account addresses and state.
setAllowWhitelistTrading: The Owner can set allow whitelist trading status.
bulkPancakeSwapWhitelist: The Owner can set bulk pancake swap whitelist
address and status.

updateRouterAndPair: The Owner can update router address and pair address.
updateAntiDump: The Owner can update maximum sell amount per cycle, time in
minutes.

aidropTokens: The Owner can set aidrop amount using wallet address.
rescueBNB: The Owner can access this function when BNB are sent to the contract
by mistake.

rescueAnyBEP20Tokens: This Function to allow admin to claim *other* BEP20
tokens sent to this contract (by mistake). The Owner cannot transfer out catpay

from this smart contract.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We have observed some issues and some of them are critical. So, it’s

good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Catpay Token

() catpay

Context
IERC20
COwnable

address=>uint256 _rOwned
address=>uint256 _tOwned
address==mapping address=>=uint25i

5 _allovwances

address==bool _isExcludedFromFee
~bool _isExcluded
=bool _isBot

address _excluded

bool tradingEnabled

kool swapEnabled

bool svwapping

IRouter router

address pair

uint® _decimals

LImt256 WA

UiNt256 _tTotal

uiMt256 _rTotal

uint256 antivvhalesmt

uint256 swapTokensAtAmount
wint256 maxSelAmourtPerCycle
uint2Z56 artiDumpCycle

kool allow\WhitelistTrading
address==UserLastSell userLastSell
address marketingAddress
address deadfddress

string _name

string _svymbol

Taxes taxes

Taxes buyTaxes

Taxes sellTaxes

TotF eesPaidStruct totF eesPaicd

=bool _isPancakeSwapWhitelisted

00000000000 0COCNNNNINNNNNENNENOOOOCGO0OCO00CO0O0OQOCO0O0CO0POOFOPOOQOPO|0OO0O0COD00N000000D0D0000OD0OCOO0ODODOCODOD

& _ constructor___ ()
S names()

A symbol()
Q.decimals()
CtotalSupply)

Q balanceOf()
transfer()
Sallowancel)
approvel)
transferFrom()
increaseAllowance()
decreaseAllowance()
AisExcludedFromReward()
AreflectionFromToken()
setTradingStatus()
QtokenFromReflection()
excludeFromReward()
includeinReward()
excludeFromFes()
includeinFees()
QlisExcludedFromFees()
setTaxes()
setBuyTaxes()
setSellTaxes()
_reflectRfi()
_takeLiguidity()
_takeMarketing()
_takeBurn()
O,_getvalues()
Q,_getTvalues()
a,_getRYWalues()
a,_getRate()
O,_getCurrertSupplyi)
_approve()

_transfer()
_tokenTransfer()
swapaAndLiguify()
addlLiguidity()
swapTokensForBRB()
updateMarketingWWallet()
updatesntivivhale Lt)
updateSwapTokensAtAmourt()
updateSwapEnabled()
setAntibot()
bulkAntiBot])
setAllowWWhitelistTrading()
bulkPancakeSwapWWhitelist()
updateRouter AndPair()
updatesntiDump()
QisBot()
taxFreeTransfer()
aidropTokens()
rescusBRNB)
rescusAnyBEPZ0Tokens()

(@) 1ractory

(X irouter

@ createPair()

@ IERC 20 |

@ Cwnable

® QtotalSupply() |

@ Qbalance () 1
@ transfer() 1
@ Qallowance() 1
@ approvel()
@ transferFrom() \

Contexi

O address _owner

@ constructor_ ()
@ Qowner()

@ renounceOwnership()
@ transferOwnership()
B sstOwner()

()] Co;ﬁe:d

< _msgSender()
< @,_msgDatal)

o000

A factory ()

SUNWETHI)

& addliguidityETH()
swapExactTokensForETHSupportingFeseOnTransferTokens()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> catpay-whitelist.sol

INFO:Detectors:
Catpay.addLiquidity(uint256,uint256) (catpay-whitelist.sol#544-557) sends eth to arbitrary user
Dangerous calls
- router.addLiguidityETH{value: bnbAmount}(address(this),tokenAmount,®,0,owner(),block.timestamp) (catpay-whitelist.sol#549-556)
Catpay.rescueBNB{uint256) (catpay-whitelist.sol#654-657) sends eth to arbitrary user
Dangerous calls:
- addresswnsm sender).transfer{weiAmount) (catpay-whitelist.sol#656)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#functions-that-send-ether-to-arbitrary-destinations
INFO:Detectors:
Reentrancy in Catpay._transfer(address,address,uint256) (catpay-whitelist.sol#452-499):
External calls
- swapAndLiquify(swapTokensAtAmount) (catpay-whitelist.sol#490)
- router.addLiquidityETH{value: bnbAmount}(address(this),tokenAmount,®,0,owner(),block.timestamp) (catpay-whitelist.sol#
549-556)
- router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,®,path,address(recipient),block.timestamp) (catp
ay-whitelist.sol#568-574)
External calls sending eth:
- swapAndLiquify(swapTokensAtAmount) (catpay-whitelist.sol#490)
- router.addLiquidityETH{value: bnbAmount}(address(this),tokenAmount,8,0,owner(),block.timestamp) (catpay-whitelist.sol#
549-556)
State variables written after the call(s):
- _tokenTransfer(from,to,amount,! (_1isExcludedFromFee[from] || _isExcludedFromFee[to]),category) (catpay-whitelist.sol#498)
- _rOwned[marketingAddress] += rMarketing (catpay-whitelist.sol#375)
- _rOwned[deadAddress] += rBurn (catpay-whitelist.sol#385)
_rowned[address(this)] += rLiquidity (catpay-whitelist.sol#365)
- _rOwned[sender] = _rOwned[sender] - s.ramount (catp whitelist.sol#514)
- rOuned[rec1plemt] _rowned[recipient] + s.rTransferAmount (catpay-whitelist.sol#515)
- _tokenT ransfer(from,to,amount,! { isExcludedFromFee[from] || _isExcludedFromFee[to]),category) (catpay-whitelist.sol#498)
rRfi {catpay-whitelist.sol#354)
- _tokenTransfer(from,to,amount,! (_isExcludedFromFee[from] || _isExcludedFromFee[to]),category) (catpay-whitelist.sol#498)
B _tOuned[sender] _tOuned[sender] - tAmount (catpay-whitelist.sol#588)
- _towned[marketingAddress] += tMarketing (catpay-whitelist.sol#373)
- _tOwned[deadAddress] += tBurn (catpay-whitelist.sol#383)
- _towned[address(this)] += tLigquidity (catpay-whitelist.sol#363)
- _tOwned[recipient] = _tOwned[recipient] + s.tTransferAmount (catpay-whitelist.sol#511)
Reference: https ithub.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities

INFO:Detectors:

Catpay.rescueAnyBEP20Tokens(address,address,uint256) (catpay-whitelist.sol#661-664) ignores return value by IERC20(_tokenAddr).transfer(
_to,_amount) (catpay-whitelist.sol#663)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-transfer

INFO:Detectors:

Catpay._transfer(address,address,uint256).category (catpay-whitelist.sol#493) is a local variable never initialized

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-local-variables

INFO:Detectors:

Catpay.addLiguidity{uint256,uint256) (catpay-whitelist.sol#544-557) ignores return value by router.addLiquidityETH{value: bnbAmount}({add
ress(this),tokenAmount,®,0,owner(),block.timestamp) (catpay-whitelist.sol#549-556)

Reference: https: !/glthub con/crytlc/sllther/ulklfDetector Documentation#unused-return

INFO Detectors

Catp

Catpay
: https: . C C 2/ ithe i/Detec S Lond al-variable-shad
INFD Detectors
Catpay.constructor(a 255) air {(ca hitelist.sol#187] C zero-check on
¢.updateRout d z) .newPair itelist.sol#616) lacks
https Jorytic/sli Jwik i/ -Documentation#missing-ze o validation
INFD Detecturs
Reentrancy
),block.timestamp) (c y-whitelist.seol#
.swapExactTokensForETHSupportingFeeOnTrans ferTokens(tokenAmount,0,path, ess(recipient),b
whitelist.sol#490)

caddLi e: b nt] ess(this), tokenAmount, wner(),block.timestamp)

bles written after the call(s):
ransfer(from,to,amount,! {_isExclud

-whitelist.sol#2

pay-whitelist.sol#293)

sate and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

External calls:
- swapTokensForBNB(tokensToSwap,address{this)) (catpay-whitelist.sol#539)
- router.swapExactTokensForETHSupportingFeeOnTransferTokens(tekenAmount,0,path,address(recipient),block.timestamp) (catp
ay-whitelist.sol#568-574)
- addLiquidi /(otherHal fofT okens ,newBalance) (catpay-whitelist.sol#541)
- router.addLiguidityET H{ salue: bnbAmount}{address(this),tokenAmount,8,0,owner(},block.timestamp) (catpay-whitelist.sol#

]
External calls sending eth
- addLiquidity(otherHalfofTokens,newBalance) (catpay-whitelist.sol#541)
- router.addLiquidityETH{value: bnbAmount}{address(this),tokenAmount,8,8,owner(),block.timestamp) (catpay-whitelist.sol#

5 e variables written after the call(s):
- addLiguidity(otherHalf0fTokens ,newBalance) (catpa hitelist.sol#541)
ncns[o.nnl][spnndA|] amount (catpay-whitelist.sol#443)
Reentrancy in Catpay.transferFrom(address,address,uint256) (catpay-whitelist. sol#;;Q—AJT):
External calls:
- _transfer(sender,recipient,amount) {catpay-whitelist.sol#248)
- router. ijlqulleyE H{value: bnbAmount}{address(this),tokenAmount,0,0,owner(},block.timestamp) (catpay-whitelist.sol#
- router.swapExactTokensForETHSupportingFeeOnTransferT
ay-whitelist.sol#568-574)
External calls snndlng eth:
- _transfer({sender,recipient,amount) (catpay-whitelist.sol#240)
- router.addLiquidityETH{value: bnbAmount}{address(this),tokenAmount.8 wner(),block.timestamp) (catpay-whitelist.sol#

okens (tokenAmount,®,path,address(recipient),block.timestamp) (catp

riables written after the call(s):
ove(sender,_msgSender(),currentAllowance - amount) (catpay-whitelist.sol#244)
- _allowances[¢ r1[spender] = amount (catpay-whitelist.sol#448)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFOD:Detectors:
Reentrancy in Catpay._transfer(address,address,uint256) (catpay-whitelist.sol#452-499):
External calls:
- swapAndLiquify(swapTokensAtAmount) (catpay-whitelist.sol#490)
- router.addLiguidityETH{value: bnbAmount}{address(this),tokenAmount.8,8,owner(),block.timestamp) (catpay-whitelist.sol#
- router.swapExactTokensForETHSupportingFeeOnTransferTokens(tekenAmount,@,path,address(recipient),block.timestamp) (catp
hitelist.sol#568-574)

External calls sending eth:
- swapAndLiquif apTokensAtAmount) (catpay-whitelist.sol#490)
- router.addlLiguidityETH{value: bnbAmount}{address(this),tokenAmount,8,8,owner(),block.timestamp) (catpay-whitelist.sol#

nnt emitted after the call(s):
ranster(sender,address(this),s. Tquuljltv' (catpay-whitelist.sol#520)
- _tokenTransfer(from,to,amount,! (_isExcludedFromFee[from] || _isExcludedFromFee[to]),category) (catpay-whitelist.s
Transfer(sender ,marketingAddress,s. tHalkhtlmg- (catpay-whitelist.sol#524)
- _tokenTransfer{from,to,amount,! (_isExcludedFromFee[from] || _isExcludedFromFee[to]),category) (catpay-whitelist.s

ransfer(sender,deadAddress,s.tBurn) (catpay-whitelist.sol#528)
_tokenTransfer(from,to,amount,! (_isExcludedFromFee[from] || _isExcludedFromFee[to]),category) (catpay-whitelist.s

Transfer(sender,recipient,s.tTransferAmount) (catpay-whitelist.sol#538)
- _tokenTransfer{from,to,amount,! (_isExcludedFromFee[from] || _isExcludedFromFee[to]),category) (catpay-whitelist.s

ntrancy in Catpay.constructoer{address) (catpay-whitelist.sol#185-2082):
External calls
- _pailr = IFactory(_router.factory()).createPair(address(this), router.WETH()) (catpay-whitelist.scl#187-188)
Event anittnd aftél the call[s):
(),_tTotal) (catpa hitelist.sol#201)
Reentrancy in Catpav s\apnudquul v'ulhT‘EC' (catpay-whitelist.sol#534-542):
External calls:
- swapTokensForBNB(tokensToSwap,address(this)) (catpay-whitelist.sol#539)
- |Dutér S\apEXaCt kensForETHSuppertingFeeOnTransferTokens(tokenAmount,®,path,address(recipient),block.timestamp) (catp
ay-whitelist.sol#568
- addLiqu 1tulothn|Halfo okens ,newBalance) (catpay-whitelist.sol#541)
- router. addL iguidityET H{ yalue: bnbAmount}(address{this),tokenAmount,0,0,owner(),block.timestamp) (catpay-whitelist.sol#

External calls sending eth:
- addLiguidity(otherHalfofTokens,newBalance) (catpa hitelist.sol#541)
- router.addlLiguidityETH{value: bnbAmount}{address(this),tokenAmount,8,8,owner(),block.timestamp) (catpay-whitelist.sol#

Reentrancy in Catpay.transferFrom{address,address,uint256)
External calls:
- _transfer(sender,recipient,amount) (catpay-whitelist.sol#248)
- router.addLiguidityETH{value: bnbAmount}({address(this},tokenAmount,0,0,owner(),block.timestamp) (catpay-whitelist.sol#

- |0ut9| swapE xactTokensForETHSupport ingFeeOnTrans ferTokens(tokenAmount . 8,path,.address(recipient),block.timestamp) (catp
ay-whitelist.sol#56
External Culls snndlh; eth:
- _transfer{sender,recipient,amount) (catpay-whitelist.sol#248
- router. dlequtdltyE Hivalue: bnbAmount}{address(this).tokenAmount,®,8,owner(),block.timestamp) (catpay-whitelist.sol#

nt emitted after the call(s):
- Approval(owner,spender,amount) {catpay-whitelist.sol#449)
- _approve(sender,_msgSender(),currentAllowance - amount) (catpay-whitelist.sol#244)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Catpay._transfer(address,address,uint256) (catpay-whitelist.sol#452-499) uses timestamp for compariscns

Dangerous comparisons:

- newCycle = block.timestamp - userLastSell[from].lastSellTime == antiDumpCycle {catpay-whitelist.sol#476)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Context._msgData() (catpay-whitelist.sol#31 is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Catpay._rTotal (catpay-whitelist.sol#118) is set pre-construction with a nen-constant function or state variable:

- (MAX - (MA _tTotal))
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializing-state-variables
INFO:Detectors:
Pragma version”8.8.4 (catpay-whitelist.sol#2) necessitates a version too recent to be trusted. Consider deploying with 8.6.12/8.7.6
solc is not recommen for deployment
Reference: https://github.cem/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

ate and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Detectors:
Function IRo
ctIL, t Cat
is not in mixedCase
is not in
1s not in

is not in

is not in mixedCase

#344) 1is not in mixe

344) 1s not 1n mixed
not in mixedCase

- is not in mixedCase
Parameter e 2 i ress, 55, 25 (e - #661) 1s not in mixedCase
int2 E :) is not in mixedCase
ANy 3 ess, . _ c whitelist. 61) is not in mixedCase
Co Is‘to\ ‘t Ca (c 2 - UPPER_CASE | UNDERSCORES
Constant Ca e = { itelist. #) is rct in LPPER CASE_WITH_UNDERSCORES
Co ls‘tc\ t Ca c # 1 in UPPER_CASE ..'I H LII:EF%‘CI-REc
! ! i t in LPPER CASE
or-Documentat

INFD
Catp

Catpay.sli () { - 2 iterals wi oo many digits:

INFD:
ol#117) =
tic/slith ci/Detector-Documentation#state-variables-that-could-be-dec ed-constant

tpa ,\| 1t list.sol#208-218)
te 115’(sol#211-2
totalsuppl r
- Cat
transfer(a
allowan
app

transfe

isExclude

uin t_EE ,uint256,uint256)

ould-be-declared-external

INFD SlLther catpay thtellst 501. analyzed (6 ccntracts w1th 75 detectcrs), 73 result() fcund
INFO:S5lither: S crytic. 1o t and Github integration

sate and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

catpay-whitelist.sol
Security

Check-effects-interaction:

INTERNAL ERROR in module Check-effects-interaction: Cannot read properties of undefined
(reading 'mame’)
Pos: not available

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.

more

Pos: 476:28:

Block timestamp:

Use of "block timestamp”: "block timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.

more

Pos: 573:12:

Gas & Economy

Gas costs: x

Gas requirement of function Catpaytaxes is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions
that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 150:4:

Gas costs: >

Gas requirement of function Catpay rescuesAsAnyBEP20Tokens is infinite: If the gas requirement of a
function is higher than the block gas Limit, it cannot be executed. Please awvoid Loops in your
functions or actions that modify Large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 661:4:

For loop over dynamic array: K

Loops that do not have a fixed number of iterations. for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas Limit
which can cause the complete contract to be stalled at a certain peoint. Additionally, using
unbounded Lloops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

more

Pos: 301:8:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:) 4

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas Llimit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it successful.

mare

Pos: 648:8:

Miscellaneous

Constant/View/Pure functions:) 4

INTERNAL ERROR in module Constant/View/Pure functions: Cannot read properties of undefined
(reading 'name’)
Pos: not available

Similar variable names:) 4

Catpay (address) - Variables have very similar names "_rOwned" and "_tOwned". Note: Modifiers
are currently not considered by this static analysis.
Pos: 196:8:

Similar variable names: x

Catpay.(address) : Variables have very similar names "_tTotal" and "_rTotal". Note: Modifiers are
currently not considered by this static analysis.
Pos: 196:27:

Guard conditions: X

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 284:8:

Guard conditions: x

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 291:8:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Guard conditions: X

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 596:8:

Guard conditions: x

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

more

Pos: 622:8:

Guard conditions: X

Use "assert(x)" if you never ever want x to be false, not in any crcumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e g. invalid input or a failing external
component.

more

Pos: 647:8:

Guard conditions: X

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e g. invalid input or a failing external
component.

more

Pos: 655:8:

Data truncated: X

Division of integer values yields an integer value again. That means eg. 10/ 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) Literal values since
those vyield rational constants.

Pos: 407:23:

Data truncated: x

Division of integer values yields an integer value again. That means eg. 10/ 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 408:18:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

catpay-whitelist.sol

catpay-whitelist.sol:2:1: Error: Compiler version "~0.8.7 does not
satisfy the r semver requirement

catpay-whitelist.so0l:42:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
catpay-whitelist.sol:77:5: Error: Function name must be in mixedCase
catpay-whitelist.so0l:95:1: Error: Contract has 26 states declarations
but allowed no more than 15
catpay-whitelist.sol:114:28:
capitalized SNAKE CASE
catpay-whitelist.so0l:137:29: Error: Constant na must be
capitalized SNAKE CASE

catpay-whitelist.s0l:139:29: Error: Constant must be
capitalized SNAKE CAS

catpay-whitelist.so0l:140:29: Error: Constant name must be in
capitalized SNAKE CAS
catpay-whitelist.sol:16
catpay-whitelist.sol:18

Error: Constant name must be

2 Error: Contract name must be in CamelCase
35:5: Error: Explicitly mark visibility in
function (Set ignoreCons ctors to true if using solidity >=0.7.0)
catpay-whitelist.s0l:388:94: Error: Variable name must be in
mixedCa:
catpay-whitelist.so0l:476:29: Error: Avoid to make time-based
decisions in your business logic
catpay-whitelist.so0l:485:47: Error: Avoid to make time-based
decisions in your business logic
catpay-whitelist.so0l:555:13: Error: Avoid to e time-based
decisions in your business logic
catpay-whitelist.so0l:573:13: Error: Avoid to make time-based
decisions in your business logic
catpay-whitelist.so0l:578:48: Error: Use double
literals
catpay-whitelist.s0l:596:43: Error: Use double quotes
literals
catpay-whitelist. : 6:31: Error: Code contains empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

