@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Backters

Website: https://backters.com

Platform: Polygon Network
Language: Solidity
Date: May 14th, 2022

https://backters.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 5
Claimed Smart Contract Featurescooiiiiiii e 6
AUIt SUMMIAIY ot 7
Technical QUICK Stats ..o e 8
Code QUANIRY ... e 9
DOoCUMENTAtION ... 9
USE Of DEPENUENCIES ... e e nenaenes 9
ASIS OVEIVIEW ... 10
Severity DefinitioNS ... 14
AUt FINAINGS oo e 15
@70 o T3 1017 T o 20
(@ 0] 1Y/ =1 1 T To [o] 0T) 21
DISCIAIMEIS ... e 23
Appendix
o Code FIoW Diagramououoiiii s 24
o Shther RESUIS LOGuiiiiii e 27
e Solidity staticanalysis ... 30
® SOININt LiNtEr oo 36

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Backters team to perform the Security audit of the
BKD and USDBK smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on May 14th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
e The BKD777 is the standard ERC777 token whose mint and burn are controlled by

redemptionController.

e USDBKY777 Contract is a smart contract, having functions like destroy, send, burn,
batchTransfer, globalOperators, authorizeGlobalOperator, etc.

e The USDBK777 contract inherits the IERC20, ERC777, SafeMath standard smart
contracts from the OpenZeppelin library.

e These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
Backters Protocol Smart Contracts

Platform Polygon / Solidity

File 1 BKD777Token.sol

File 1 MD5 Hash

998502EC75BC90ES5A83C43C47AB3CFOB

Updated File 1 MD5 Hash

3E6AA51B2E25EE4189DD2F38555433EC

File 2

RedemptionController.sol

File 2 MD5 Hash

998502EC75BC90ES5A83C43C47AB3CFOB

Updated File 2 MD5 Hash

4FO09AE3D3EADSD82EBEDBB678281D073

File 3

USDBK777Token.sol

File 3 MD5 Hash

C5F6130245CA46E9B24FA14F3A3176D5

Updated File 3 MD5 Hash

6819C3C9652FBDDC47F08A15DEDSB138

Audit Date

May 14th, 2022

Revise Audit Date

December 13th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 BKD777Token.sol YES, This is valid.
e Authorized operator can mint and burn tokens for
wallets.
e Authorized operator can destroy the smart

contract.

File 2 RedemptionController.sol YES, This is valid.

Manager can add tokens for wallets.

Redeemer can redeem their tokens

Manager can set an interval, period, reward token,

reward from account, and redeem token.

Default Admin can destroy the smart contract.

File 3 USDBK777Token.sol YES, This is valid.
e Owner can destroy the smart contract.
e Owner can burn someone else’s tokens.

e Open Zeppelin standard code is used.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 2 low and some very low level issues.

All the issues have been fixed/acknowledged in revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Backters Protocol are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Backters Protocol.

The Backters team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a Backters Protocol smart contract code in the form of a Files. The hash of

that code is mentioned above in the table.
As mentioned above, code parts are well commented. So it is easy to quickly understand
the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website https://backters.com which provided

rich information about the project architecture.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://backters.com

AS-IS overview

BKD777Token.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [name read Passed No Issue
3 | symbol read Passed No Issue
4 | decimals write Passed No Issue
5 | granularity read Passed No Issue
6 | totalSupply read Passed No Issue
7 | balanceOf read Passed No Issue
8 [send write Passed No Issue
9 |[transfer write Passed No Issue
10 | burn write Passed No Issue
11 | isOperatorFor read Passed No Issue
12 | authorizeOperator write Passed No Issue
13 | revokeOperator write Passed No Issue
14 | defaultOperators read Passed No Issue
15 | operatorSend write Passed No Issue
16 | operatorBurn write Passed No Issue
17 | allowance read Passed No Issue
18 | approve write Passed No Issue
19 | transferFrom write Passed No Issue
20 | mint internal Passed No Issue
21 | mint internal Passed No Issue
22 | send internal Passed No Issue
23 | burn internal Passed No Issue
24 | move write Passed No Issue
25 | approve internal Passed No Issue
26 | callTokensToSend write Passed No Issue
27 | callTokensReceived write Passed No Issue
28 | spendAllowance internal Passed No Issue
29 | beforeTokenTransfer internal Passed No Issue
30 | destroy write Passed No Issue
31 | getBurnReturnAccount read Passed No Issue
32 | getBurnReturnPercentage read Passed No Issue
33 [setBurnReturnAccount write Passed No Issue
34 | setBurnReturnPercentage write Burn Return Refer Audit
Percentage limit is Findings
not set
35 | getBurnReturnForwardAccount read Passed No Issue
36 [getBurnReturnForwardPercentage read Passed No Issue
37 | setBurnReturnForwardAccount write Passed No Issue
38 | setBurnReturnForwardPercentage write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

39 | operatorBurnReturn write Function input Refer Audit
parameters lack of Findings
check
40 | burnReturn internal Passed No Issue
41 | operatorMint write Function input Refer Audit
parameters lack of Findings
check
42 | circulatingSupply write Passed No Issue
43 | operatorTransferAnyERC20Token write Function input Refer Audit
parameters lack of Findings
check
44 | batchBalanceOf write Passed No Issue
45 | operatorBatchTransfer write Infinite loop Refer Audit
possibility,Function Findings
input parameters
lack of check
46 | operatorBatchMint write Infinite loop Refer Audit
possibility Findings
47 | operatorBatchBurn write Infinite loop Refer Audit
possibility Findings
RedemptionController.sol
Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | supportsinterface read Passed No Issue
3 | getRoleMember read Passed No Issue
4 [getRoleMemberCount read Passed No Issue
5 grantRole internal Passed No Issue
6 revokeRole internal Passed No Issue
7 | destroy write Passed No Issue
8 | count read Passed No Issue
9 [startsAt read Passed No Issue
10 | startsAt write Passed No Issue
11 | interval read Passed No Issue
12 | periods read Passed No Issue
13 | redeemToken read Passed No Issue
14 | periods write Passed No Issue
15 | redeemToken write Passed No Issue
16 | rewardAccount read Passed No Issue
17 | rewardAccount write Passed No Issue
18 | rewardToken write Passed No Issue
19 | rewardToken read Passed No Issue
20 | redeemTokenTotalSupply read Passed No Issue
21 | rewardTokenBalance read Passed No Issue
22 | add write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

23 | batchAdd write Infinite loop Refer Audit
possibility Findings
24 | addRedemption internal Passed No Issue
25 | add internal Passed No Issue
26 | get read Passed No Issue
27 | getAll read Passed No Issue
28 | operatorMigrateFrom write Passed No Issue
29 | getAccountAtOffset read Passed No Issue
30 | redeemableAt read Passed No Issue
31 | redeemableAt read Passed No Issue
32 [redeemable read Passed No Issue
33 | redeemable read Passed No Issue
34 | redeemPlansAt internal Passed No Issue
35 [redeemAt internal Passed No Issue
36 | redemptionSchedule internal Passed No Issue
37 | redeem write Passed No Issue
38 | operatorTransferAnyERC20Token write Passed No Issue
39 | supportsinterface read Passed No Issue
40 | update write Passed No Issue
USDBK777Token.sol
Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | destroy write Passed No Issue
3 | authorizeGlobalOperator write Passed No Issue
4 | revokeGlobalOperator write Passed No Issue
5 | isOperatorFor read Passed No Issue
6 | globalOperators read Passed No Issue
7 | getTransferEnabled read Passed No Issue
8 | setTransferEnabled write Passed No Issue
9 | getBurningEnabled read Passed No Issue
10 | setBurningEnabled write Passed No Issue
11 | send write Passed No Issue
12 | transfer write Passed No Issue
13 | burn write Passed No Issue
14 | transferFrom write Passed No Issue
15 | operatorSend write Passed No Issue
16 | batchBalanceOf read Passed No Issue
17 | batchTransfer write Infinite loop Refer Audit
possibility Findings
18 | operatorBatchTransfer write Infinite loop Refer Audit
possibility, Findings

Function input
parameters lack
of check

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

19 | operatorBatchMint write Infinite loop Refer Audit
possibility Findings
20 | operatorBatchBurn write Infinite loop Refer Audit
possibility Findings
21 | operatorMint write Function input Refer Audit
parameters lack Findings
of check
22 | operatorBurn write Passed No Issue
23 | operatorTransferAnyERC20Token write Function input Refer Audit
parameters lack Findings
of check
24 | name read Passed No Issue
25 | symbol read Passed No Issue
26 | decimals write Passed No Issue
27 | granularity read Passed No Issue
28 | totalSupply read Passed No Issue
29 | balanceOf read Passed No Issue
30 | send write Passed No Issue
31 [transfer write Passed No Issue
32 | burn write Passed No Issue
33 | isOperatorFor read Passed No Issue
34 | authorizeOperator write Passed No Issue
35 | revokeOperator write Passed No Issue
36 | defaultOperators read Passed No Issue
37 | operatorSend write Passed No Issue
38 | operatorBurn write Passed No Issue
39 [allowance read Passed No Issue
40 | approve write Passed No Issue
41 | transferFrom write Passed No Issue
42 | mint internal Passed No Issue
43 | send internal Passed No Issue
44 | burn internal Passed No Issue
45 | move write Passed No Issue
46 | approve internal Passed No Issue
47 | callTokensToSend write Passed No Issue
48 | callTokensReceived write Passed No Issue
49 | spendAllowance internal Passed No Issue
50 | beforeTokenTransfer internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

(1) Burn Return Percentage limit is not set: BKD777Token.sol

Operators can set the individual Burn Return Percentage to any variable. This might deter
investors as they could be wary that these percentages might one day be set to 100%

which might affect the Return amount calculations.

Resolution: Consider adding an explicit limit while setting the setBurnReturnPercentage
value.

Status: This issue is fixed in the revised contract code.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low

(1) Infinite loop possibility:
Below functions allow the operator to input unlimited wallets. So, the operator must input
limited wallets, as inputting excessive wallets might hit the block's gas limit. The operator

can accept this risk and can execute this function using limited wallets only.

BKD777Token.sol

operatorBatchTransfer

rBatchTransfer(

recipients,

amounts,

_send{sender, recipient, amount, d » operatorData,

ipients,
amounts,
>
atorData
T
L
(recipients.length == amounts.length, “BE 7: recipients and amounts length mismatch™);

_msgSende
: batch mint using the

(isOperatorFor{operator, recipient), =~

_mint(recipient, amount, data, operatorData);

h mismatch™);

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

RedemptionController.sol
batchAdd

batchAdd{
[]
[]

ntr

timestamp = .timestamp < startsAt() ? (startsAt()): (.timestamp);

i=0; i< a ts.length; i++) {
_add(accounts[i], amo], timestamp, data[i]);

BKD777Token.sol
e operatorBatchTransfer
e operatorBatchMint
e operatorBatchBurn

e batchTransfer

Resolution: We suggest specifying some limit on the number of wallets can be used. This
will prevent any potential human error.

Status: This issue is fixed in the revised contract code.

(2) Function input parameters lack of check:
Variable validation is not performed in below functions:

BKD777Token.sol
e operatorBurnReturn = account
e operatorMint = account
e operatorTransferAnyERC20Token = token , recipient

e operatorBatchTransfer = sender

USDBK777Token.sol
e operatorMint = account
e operatorTransferAnyERC20Token = token , recipient

e operatorBatchTransfer = sender

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We advise to put validation: integer type variables should be greater than 0
and address type variables should not be address(0).

Status: This issue is fixed in the revised contract code.

Very Low / Informational / Best practices:
(1) “external” visibility over “public”: BKD777Token.sol

We suggest using “external” visibility instead of “public” if those functions are not being
called internally. Although this does not raise any security issue, it is considered a best

practice, and it saves some gas as well.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Status: Acknowledged.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e destroy: RedemptionController owner can destroy smart contract.

e operatorMigrateFrom: RedemptionController operator can withdraw any ERC20
token received by the contract.

e destroy: BKD777Token owner can destroy smart contract.

e setBurnReturnAccount: BKD777Token owner can set burn return account address.

e setBurnReturnPercentage: BKD777Token owner can set burn return percentage
value.

e setBurnReturnForwardAccount: BKD777Token owner can set burn return forward
account address.

e setBurnReturnForwardPercentage: BKD777Token owner can set burn return
forward percentage value.

e operatorBurnReturn: BKD777Token operator can burn return token.

e operatorMint: BKD777Token operator can mint and transfer tokens.

e operatorTransferAnyERC20Token: BKD777Token operator can withdraw any
ERC20 token received by the contract.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of files. And we have used all possible tests
based on given objects as files. We have observed 1 medium issue, 2 low issues and
some very low level issues in the smart contracts. All the issues have been fixed /

acknowledged in the revised code. So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Backters Protocol

BKD777Token Diagram

@© s

ErcT77

IBuroReturn

IoperatorMint

[CircuiatingSupply
[OperatorTransterAnyERC20Token
IERCTT7BatchBalanceOf

IERCTT7OperatorBatchFunctions

mSstemath for uint256
@ rercrszoregisty

© QnplementsERC65ierfaceNoCache()

© operatortint() N
o

/ QercuatingSupply() N
© operatorTransferAnyERC20Token()
/ © Quat

chBalanceOr . N
© operstorBatchTransfer() \

AN
\

*\for int256

. © e

. Context
/ \ IERCTTT
/ / IERC20

\ mnadaress for adiress

v ERC1820Regitry ERC1820 REGISTRY.
‘address=>uni256 _balances.

\ 0 stiing _symbol
O byles32_TOKENS SENDER_INTERFACE HASH
0 bytes 2 _TORENS_RECPENT NTERFACE HASH

55 defogOpersorsarray
‘adaressobool ¢ ors
0 adiress—>mapping aderess=bool operstors
@ s | \ (@) satevatn| | O saress=smappng sxress=sbool revkecDetasOperators
Qryadd)
0
Quysu)
e ® 1]
S @ @ | @] [seome
° I I t |
S D © operatoratchlint) & Qwacrssenceot) | [coccsmnsemo | [Qe
oo drecort) 3 am)
S ————— > Qdv)
© operstauretent) Qnod)

°
© authorizeOperator()
evoleOperator()
© QuefautOperstors()
© operatorSend()

°

Qalowance()

> TbeforeTotenTransfer()

for address
@ sooess . @ v
;:‘:5;:?‘;() © conten o Sty
o | [TamEe0| |
=
=y 1y

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

rd

L

(@) 1redemptionControtier

@ Qeount()

@ startsAt()

@ interval()

@ periods()

@ redeemToken()

@ rewardAccount()

@ rewardToken()

@ OredeemTokenTotalSupply()
@ QrewardTokenBalance()
@ add()

@ hatchAdd()

© Qget()

@ Qgetall)

@ QgetAccount AtOffset()
@ QredsemableAt()

@ Qredsemable()

@ redeem()

RedemptionController Diagram

@ RedemptionContraller

AccessConiro/Enumerable
IRedemptionControiler
1OperatorTransferAnyERC20Token

@ bytes32 MANMAGER_ROLE
© hytes32 REDEEMER_ROLE
< uintG4 _start

< uint64 _nterval

< UiINt256 _periods

< address _token

< address _rewardToken

< address _rewardAccount
 uint256=>Redemption _plans
< address==Redemptions _redemptions
< uint256 _numRedemptions

@ _ constructor__()

@ destroy()

@ Qoount()

© startsAt()

@ interval()

@ periods()

@ redeemToken()

@ rewardAccount()

@ rewardToken()

@ QredeemTokenTotalSupply()
@ QrewardTokenBalance()
@ add()

@ hatchAdd()
 _addRedemption()

< _add()

© Qget()

@ Qgetall)

@ operatorMigrateFrom()

@ QgetAccount AtOffset()
@ QredsemableAt()

@ Qredeemable()

/| @ _redeemPlansAt()

< _redeemAt()

& O_redemptionSchedule()
@ redeem()

@ operatorTransfer AnyERC20Token()
@ Qsupportsinterface()

@ 1OperatorTransferAnyERC20Token)|

@ rercrrr

@ Cname()

@ Qsymbol()
Sgranularity()
QtotalSupply()
QbalanceCf()
send()

burn()
QisOperatorFor{)
authorizeOperator()
revokeOperator()

A defaultOperators()
operatorSend()
operatorBurn()

0000000000

(@) 1erc20metadeta

IERC20

@ Qname()
@ Qsymbol()
@ Qudecimals()

(©) AccessControlEnumerable

@ operatorTransferAnyERC20Token()

O bytes32==EnumerableSet AddressSet

[AccessControlEnumerable
AccessControl

EnumerableSet for EnumerableSet AddressSet

_roleMembers

(@) rerczo

@ OotalSupply()
@ QpalanceOf()
@ transfer()

-

@ Qsupportsinterface()

@ QgetRoleMember()

@ QgetRoleMember Count()
< _grantRole()

© _revokeRole()

@ Qallowance()
@ approve()
@ transferFrom()

,
-
-
-
-

; 'for EnumerableSet AddressSet

i

)

@ Strings

O bytes16 HEX_SYMBOLS

< QoString()
* QoHexString()

@ lAccessControlEnumerable

I
v @ AccessControl
Context
® EnumerableSet| IAccessControl
ERC165

B _add()
B _remove() O bytes32==RoleData _roles
® Q_cortains() © bytes32 DEFAULT_ADMIN_ROLE
= _length()
| Q_at) @ Qsupportsinterface()
| O _values() @ QhasRole()
< add() < @ _checkRole()
< remove() @ QgetRoleAdmin()
< Qeontains() @ grantRole()
< Qlengthi) ® revokeRole()
< Qat() ® renounceRole()
< Qualues() < _setupRole()

© _setRoleAdmin()

< _grantRole()

< _revokeRole()

>

HAccessControl

® O getRoleMember()
@ O getRoleMemberCount()
1

%
© Context

(©) erciss

< €_msgSender()
< & _msgData()

IERC185

@ Qsupporteinterface()

@ rercies

@ Qsupportsinterface()

(@) 1accesscontrol

@ QhasRole()

@ QgetRoleAdmin()
@ grantRole()

@ revokeRole()

@ renounceRole()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

‘ @ rercr 7mecwrenz|

‘@tmcnwenwl

[o tokensReceived |

| @ tokensTosendo) i

=
<]

@ Safelath|

@ ==

© sethianager()
@ Qgethanager()

© setinterfaceimplementer()

© Qgetlnterfacelmplemerter()

© QinterfaceHash(y

© updateERC165Cache()

@ QimplementsERC163Interface()

© QimplementsERC1BSIterfaceNoCache()

© QryAdd)
& Qrysub()
< Qutryhiul)
< QryDiv()
< Qirymod()
< Qadd()
© Qsub()
Q)

© Qg

< Qmodty

.
 for uint256

USDBK777Token Diagram

(©) uspBKIT7Token

ERCTTT
ICperatorint
ICperatorTransferAnyER C20Token
IERCTT78atchBalance OF

IERCTTT OperatorBatchFunctions

mSafeMatn for w256

O bool _transferEniabled
0 bool _burningEnabled

O addréss=-Lint256 _globalOperators
O gadress _gobalOperatorsArray

© _constructor_()
© destroy()
© authorizeGlobaiOperstor()
® revokeGlobalOperator()
© QisOperatorFor()
© QglobalOperators()
© QetTransterEnabled()
_ | ® setTransterenableat)

-7 | ® QoetBurningEnabled()

- © setBurningEnabled)
© send()

® transfer()
© bumn(

@ transferFrom() \ N
- © operstorSend()
© QpatchBalance0i()
@ batchTransfer()
/" | © operatorBatchranstergy
4 © operatorBatchint()
/ © operatorBatchBurn()
@ operatorhint() \
/ © operatorBum()
/ @ operator Transfer AnyERC20Token() \ AN
r ;

- ®fEEC777r‘

‘ (@) 10peratorTiansiernyERC20Token
I

‘@/Eﬁ?lﬂ f
I

© operctorhiny)

[Soreao

T = o 8
o

©) erern

Context
ERCTTT
IERC20

mnAddress for 20dress

O address=-uint258 _balan
1256 totalSupply

O string

O string _symbol

© IERC1820Reqistry _ERC1820_REGISTRY
ces.

O bytes32 _TOKENS_SENDER_INTERFACE_HASH
32 _TORENS RECPIENT INTERFACE_HASH

_operators:

kecDefautOperats

© Qaecimals()

© Qgranuiarty()

© QtctalSupply()

© QualanceOf()

@ send))

© transfer()

© bumn(y

© QisOperatorFor()
© authorizeOperstor()
© revokeOperator()
© Qaefauttoperstors()
© operatorSend()

© operatorBumg)

© Qalowance()

@ approve()

© transferFrom()

< _mint()

B _callTokensToSend()
callTokensReceivedf)
© _spendAliowan

ce()
© heforeTokenTransfer()
T

0 byte
s5_defaulOperatorsAray
o _defautOperat
o
o
o
© _constructor_()
© Qname()
© Qsymbol(y

‘address=-mapping address=>uit256 _alowances

s for address

@) Address

@ IERCTTT

@ /zgczo

© Quscontract))
© senavaiue()
© functionCall()

© QfunctionStaticCall)
© functionDelegateCa)
© QuerifyCalResut()

© functionCalAithalue)

© QotalSupply()
© Qpalanceor()
© transter()
© Qalowancs()
© approve()
© transferFromty

© Qname()

© Qsymbel()

@ Qgranularty()
© Qetaisupply()
© Qualance0f)

© QisOperatorFor()
© autherizeOperstor ()
© revokeOperat

0
© QulefautOperators()
© operstorSend()
© operatorBurn()

© Context

© Q_msgSender()
© Q_msbata()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> BKD777Token.sol

INFO:Detectors:
BKD777Token.constructor({string,string,address[],address,uint256,address,uint256,uint256).name (BKD777Token.sol#1458) shadows
- ERC777.name() (BKD777Token.sol#974-976) (function)
- IERC777.name() (BKD777Token.sol#715) (function)
BKD777Token.constructor(string,string,address[],address,uint256,address,uint256,uint256).symbol (BKD777Token.sol#1459) shadows:
- ERC777.symbol{) {BKD777Token.sol#981-983) (function)
- IERC777.symbol({) (BKD777Token.sol#721) (function)
BKD{;; oken.constructor(string,string,address[],address,uint256,address,uint256,uint256).defaultOperators (BKD777Token.sol#1460
) Shadows
- ERC777.defaultOperators() (BKD777Token.sol#1896-1098) (function)
- IERC777.defaultOperators{) (BKD777Token.sol#822) (function)
Reference: https://github. CDWIC|yt1cf511ther,;ikifDetector—Docuwentation#local—variable—shadowing
INFO:Detectors:
BKD777Token.setBurnReturnAccount(address).account (BKD777Token.sol#1499) lacks a zero-check on
- _burnReturnAccount = account (BKD777Token.sol#1562)
BKD777Token.setBurnReturnForwardiccount(address) .account (BK oken.sol#1521) lacks a zero-check on :
- _burnReturnForwardAccount = account (BKD777Token.sol#1524)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Reentrancy in ERC777._burn{address,uint256,bytes,bytes) (BKD777Token.sol#1283-1307):
External calls
- _callTokensToSend(operator,from,address(8),amount,data,operatorData) (BKD777Token.sol#1293)
- IERCT7 _nderilwplewenter}.tokens'o?en-ioperator,frow,to,awount,userData,operatorData) (BKD777Token.sol#
State variables written after the call(s):
- _balances[from] = fromBalance - amount (BKD777Token.sol#1301)
- _totalsupply -= amount (BKD777Token.sol#1303)
Reentrancy in ERC777._send{address,address,uint256,bytes,bytes,bool) (BKD777Token.sol#1256-1274):
External calls:
- _callTokensT nd(operator, from,to,amount,userData,operatorData) (BKD777Token.sol#1269)
- IERC ender(implementer).tokensToSend(operator, from,to,amount,userData,operatorData) (BKD777Token.sol#
State variables written after the call(s):
- _woveioperator,frow,to,awount,userData,operatorData} (BKD777Token.sol#1271)
- _balances[from] = fromBalance - amount (BKD777Token.sol#1322)

External calls:
- ERC777({name,symbol,defaultOperators) (BKD777Token.sol#1467)
- _ERC1820_REGISTRY.setInterfaceImplementer{address{this),keccak256(bytes){ERC777Token),address({this)) (BKD777T
oken.sol#967)
- _ERC1820_REGISTRY.setInterfaceImplementer{address{this),keccak256(bytes){ERC20Token),address(this)) (BKD777To
ken.sol#968)
State variables written after the call(s):
- _burnReturnAccount = burnReturnAccount (BKD777Token.sol#14708)
- _burnReturnForwardAccount = burnReturnForwardAccount (BKD777Token.sol#1475)
- _burnReturnForwardPercentage = burnReturnForwardPercentage (BKD777Token.sol#1478)
- _burnReturnPercentage = burnReturnPercentage (BKD777Token.sol#1472)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in ERC777._burn{address,uint256,bytes,bytes) (BKD
External calls
- _callTokensToSend(operator,from,address(@),amount,data,operatorData) (BKD777Token.sol#1293)
- IERC777 hd9|llwplawantarl tokensToSend(operator, from,to,amount,userData,operatorData) (BKD777Token.sol#1366)
Event emitted after the call{s):
- BU|nejLDpe| or,from,amount, ﬂata,operatDrData) (BKD777Token.sol#1385)
- 'ransferffrow,addressiﬁ),awount} (BKD777Token.sol#1306)
Reentrancy in BKD777Token._ burnReturn{address,uint256,bytes,bytes) (BKD777Token.sol#15458-1588):
External calls:
- _send(account,_burnReturnForwardAccount,forwardAmount,data,operatorData,false) (BKD777Token.sol#1574)
- IERCTTTRecipientiiwplewenter}.tokensReceivedtDperator,frow,to,awount,userData,operatorData} (BKD777Token.sol#

oken.sol#1283-1307):

- IERC7775ender(implementer).tokensToSend(operator,from,to,amount,userData,operatorData) (BKD777Token.sol#1366
_burn{account,burnAmount,data,operatorData) (BKD777Token.sol#1579)

- IERCTTTSendeFiiwplewenter).tokens'o?enwiDperator,frow,to,awount,userData,operatDrData) (BKD777Token.sol#1366)
vent emitted after the call(s):

_mint{msg.sender, initialSupply,,) (BKD777Token.sol#1481) i
- IERC777Recipient(implementer).tokensReceived(operator,from,to,amount,userData,operatorData) (BKD777Token.sol#

ERC777(name,symbol,defaultOperators) (BKD777Token.sol#1467)
- _ERC1820 _REGISTRY.setInterfaceImplementer(address(this),keccak256(bytes)(ERC777Token),address(this)) (BKD777T
oken.sol#967)

ken.sol#

- _ERC1820 REGISTRY.setInterfaceImplementer(address(this),keccak256(bytes)(ERC20Token),address(this)) (EKD777To
#968)
Event emitted after the call(s):
- Hlntejtoperator,account,awount,userData,operatorData) (BKD777Token.sol#1243)
- _mint(msg.sender, initialSupply,,) (BKD777Token.sol#1481)
- Transfer(address(8),account,amount) (BKD777Token.sol#1244)
- _mint(msg.sender,initialSupply,,) (BKD777Token.sol#1481)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Address.verifyCallResult(bool,bytes,string) (BKD777Token.sol#481-501) uses assembly
- INLINE ASM (BKD777Token.sol#493-496)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
Address.functionCall(address,bytes) (BKD777Token.sol#365-3
Address. functionCall{address, bvtés ,string) (BKD777Token. 501* 3] eyer usnj and sloulj bﬂ removed
Address. functionCallWithva luet jdless ,bytes,uint256) (BKD 2N, 50l#394 -4 is never used and should be removed
Address.function(allwithvalue[address,bytes,uintE‘E,string) (BKD777Token.sol#408-419) is never used and should be removed
Address.functionDelegateCall(address,bytes) (BKD777Token.sol#454-456) is never used and should be removed
Address.functionDelegateCall{address,bytes,string) (BKD777Token.sol#464-473) is never used and should be removed
Address.functionStaticCall(address,bytes) (BKD777Token.sol#427-429) is never used and should be removed
Address. functionStaticCall{address,bytes,string) (BKD oken.sol#437-446) 1is never used and should be removed
Address.sendValue(address,uint256) (BKD777Token.sol#348-345) 1is never used and should be removed
Address.veri vcallRasultlbool bytes,string) (BKD777Token.sol#481-501) is never used and should be removed

a private and confidential document. No part of this document should
closed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log RedetinCotroIer.soI

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither log >> USDBK777Token.sol

INFO:Detectors:
USDBK777Token. const|ucto|lst|1ng string,address[],uint256).name {USDBK777Token.sol#1440) shadows
- ERC777.name() (USDBK777Token.sol#945-947) (function)
- IERC777.name() (USDBK777Token.sol#535) (function)
USDBK777Token. const|ucto|lst|1ng stllng,ajj|ass[] Ulht;EE'.SvaDl (USDBK777Token.sol#1441) shadows
.symbol{) (USDBK777Token.sol#052-954) {function)
Sywbolll (USDBK777Token.sol#541) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
Reentrancy in ERC777._burn{address,uint256,bytes,bytes) (USDBK777Token.sol#1253-1277):
External calls:
- _callTokensToSend(operator,from,address(@),amount,data,operatorData) (USDBK777Token.sol#1263)
- IERcaaxcand9|Ilwplawant9|l tokensToSend(operator, from,to,amount,userData,operatorData) (USDBK777Token.sol#133

State variables written after the call(s):
- _balances[from] = fromBalance - amount (USDBK777Token.sol#1271)
- _totalSupply -= amount (USDBK777Token.sol#1273)
Reentrancy in ERC777._send{address,address,uint256,bytes,bytes,bool) (USDBK777Token.sol#1226-1244):
External calls:
- _callTokensT d{operator,from,to,amount ,userData,operatorData) (USDBK777Token.sol#1239)
- IERCTeeSendeFiiwplewenter}.tokeﬁs'o?endiDperator,frow,to,awount,userData,operatorData} (USDBK777Token.sol#133

e variables written after the call(s):
(operator,from,to,amount,userData,operatorData) (USDBK777Token.sol#1241)
- balahCQS[T\DW] = TIDWBalaHCQ - amount (USDBK777Token.sol#1292)
- _balances[to] += amount (USDBK777Token.sol#1294)
Reentrancy in USDBK777Token.constructor{string,string,address[],uint256) (USDBK777Token.sol#1439-1458):
External calls:
- ERC777{name,symbol,operators) (USDBK777Token.sol#1445)
- _ERC1820_REGISTRY.setInterfaceImplementer({address{this),keccak256({bytes)(ERC777Token),address(this)) (USDBK77
7Token.sol#938)
- _ERC1820_REGISTRY.setInterfaceImplementer({address{this),keccak256({bytes)(ERC20Token),address{this)) (USDBK777
Token.sol#939)
State variables written after the call(s):
- bU|n1ngEnab1_ = false (USDBK777Token.sol#1448)
- _globalOperators[operators[i]] = i (USDB Token.sol#1452)
- _globalOperatorsArray = operators (USDBK777Token.sol#1450)

- _transferEnabled = false (USDBK777Token.sol#1447)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentranc ulnerabilities-2
INFO:Detectors:
Reentrancy in ERC777._burn(address,uint256,bytes,bytes) (USDBK777Token.sol#1253-1277):
External calls:
- _callTokensToSend(operator,from,address(8),amount,data,operatorData) (USDBK777Token.sol#1263)
- IERCaaTSendA|Ilwplawantarl tokensToSend(operator,from,to,amount,userData,operatorData) (USDBK777Token.sol#133

Event emitted after the call(s):
- BurnediDperator,frow,awount,data,operatorData} (USDBK777Token.sol#1275)
- Transfer(from,address(8),amount) (USDBK777Token.sol#1276)
Reentrancy in ERC777._mint(address,uint256,bytes,bytes,bool) (USDBK777Token.sol#1194-1215):
External calls:
- _callTokensReceived(operator,address(8),account,amount,userData,operatorData, requireReceptionAck) (USDBK777Token.sol#

- IERC777Recipient{ implementer).tokensReceived(operator,from,to,amount,userData,operatorbata) (USDBK777Token.so

vent emitted after the call(s):
Minted(operator,account,amount,userData,operatorData) LCDBKara oken.sol#1213)
- Transfer(address(8),account, aWDUHt' {USDBK777Token.sol#
Reentrancy in ERC777._send(j|ass ajj\nss ,uint256,bytes ,bytes, booll ILCDBKaar oken.sol#1226-1244):
External calls:
- _callTokensToSend(operator, from, to,amount,userData,operatorData) (USDBK777Token.sol#1239)
- IERC7 Tcand9|llwplawant9|I.tokans DEen-lopnrator from,to,amount,userData,operatorData) (USDBK777Token.sol#

Event emitted after the call{s):
- Sent(operator,from,to,amount,userData,operatorData) (USDBK777Token.sol#1296)
(operator,from,to,amount,userData,operatorData) (USDBK777Token.sol#1241)
- Transfer({from,to,amount) (USDBK777T oken.sol# £1297)
_m iDperator,frow,to,awount,userData,operatorData} (USDBK77 ken.sol#1241)
Reentrancy in USDBK777Token.constructor(string,string,address[],uint256) (USDBK777Token.sol#1439-1458):
External calls:
- _mint{msg.sender, initialSupply,,) (USDBK777Token.sol#1456)
- IERC777Recipient{ implementer).tokensReceived(operator,from,to,amount,userData,operatorbata) (USDBK777Token.so
1#1362)
- ERC777(name,symbol,operators) (USDBK777Token.sol#1445)
- _ERC1820_REGISTRY.setInterfaceImplementer{address(this),keccak256(bytes)(ERC777Token),address{this)) (USDBK77

- Transfer(from,to,amount) {USDBK777Token.sol#1297)
- move({operator, from,to,amount,userData,operatorbata) (USDBK777Token.sol#1241)
Reentrancy in USDEK7 oken.constructor(string, stllng,ajjlnss[] uint256) (USDEBK Token.sol#1439-1458):
External calls:
- _mint(msg.sender,initialSupply,,) (USDBK777Token.sol#1456)
- IERC777Recipient(implementer).tokensReceived({operator,from,to,amount,userData,operatorData) (USDEK777Token.so

- ERC777(name,symbol,operators) (USDEK777Token.sol#1445)
- _ERC1326 REGISTRY.setInterfaceImplementer(address(this),keccak256(bytes)({ERC777Token),address(this)) (USDBK77
TToken.sol#928)
- _ERC1820_REGISTRY.setInterfaceImplementer(address(this),keccak256(bytes)(ERC28Token),address(this)) (USDBK777
Token.sol#939)
Event emitted after the call(s):
- Minted{operator,account,amount,userData,operatorData) (USDBK777Token.sol#1213)
- _mint({msg.sender, initialSupply,,) (USDBK Token.sol# #1456)
- Transfer{address{@),account,amount) (USDBK777Tok sol#1214)
- _mint({msg. SAhjﬁl,lnltlalcupplv,,} (USDBK777T
Reference: https://github. CDWJC|vtlcfslltharf\1k1fDntactor Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Address.verifyCallResult({bool,bytes,string) (USDBK777Token.sol#197-217) uses assembly
- INLINE ASM (USDBK777Token.sol# -212)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage

private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

BKD777Token.sol

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in ERC777.(string,string.address[]): Could
potentially lead to re-entrancy vulnerability.

more

Pos: 953:4:

Low level calls:

Use of "delegatecall”; should be avoided whenever possible. External code, that is called can change
the state of the calling contract and send ether from the caller's balance. If this is wanted behaviour,
use the Solidity library feature if possible.

maore

Pos: 471:50:

Selfdestruct:

Use of selfdestruct: Can block calling contracts unexpectedly. Be especially careful if this contract is
planned to be used by other contracts (i.e. library contracts, interactions). Selfdestruction of the
callee contract can leave callers in an inoperable state.

Pos: 1487:8:

Gas & Economy

Gas costs:

Gas requirement of function BKD777 Token.batchBalanceOf is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions
or actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1627:4:

Gas costs:

Gas requirement of function BKD777 Token.operatorBatchTransfer is infinite: If the gas requirement
of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 1643:4:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can
cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to
such functions to make it successful.

more

Pos: 1693:8:

Miscellaneous

Constant/View/Pure functions:

ERC777._beforeTokenTransfer{address,address,address,uint256) : Potentially should be
constant/view/pure but is not.

more

Pos: 1434:4:

Similar variable names:

BKD7 77 Token.operatorBatchMint{address[],uint256[],bytes,bytes) : Variables have very similar
names "_operators" and "operator".
Pos: 1669:8:

Similar variable names:

BKD7 77 Token.operatorBatchMint{address[],uint256[],bytes,bytes) : Variables have very similar
names "_operators" and "operator".
Pos: 1670:16:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.

Pos: 1651:8:

Delete from dynamic array:

Using "delete” on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift itermns manually and update the "length" property.
more

Pos: 1087:12:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants.

Pos: 258:19:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

RedemptionController.sol

Block timestamp:

Use of "block.timestamp": "block timestamp” can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome of
a transaction in the mined block.

more

Pos: 1614:85:

Selfdestruct:

Use of selfdestruct: Can block calling contracts unexpectedly. Be especially careful if this contract is
planned to be used by other contracts {i.e. library contracts, interactions). Selfdestruction of the
callee contract can leave callers in an inoperable state.

more

Pos: 1193:8:

Gas & Economy

Gas costs:

Gas requirement of function RedemptionController.add is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1287:4:

Gas costs:

Gas requirement of function RedemptionController.batchAdd is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions
or actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 1299:4.

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a certain
amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can
cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to
such functions to make it successful.

more

Pos: 1311:8:

Miscellaneous

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

RedemptionController._addRedemption(uint64,uint256,address,uint256,bytes) : Variables have very
similar names "_periods" and "period". Note: Modifiers are currently not considered by this static
analysis.

Pos: 1324:41:

Similar variable names:

RedemptionController._addRedemption(uint64,uint256,address,uint256,bytes) : Variables have very
similar names "_plans" and "plan". Note: Modifiers are currently not considered by this static
analysis.

Pos: 1323:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 1242:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 1626:8:

Delete from dynamic array:

Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to
remove the empty position you need to shift tems manually and update the "length" property.
Pos: 150:12:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants.

Pos: 1601:44:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since those
yield rational constants.

Pos: 1601:45:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

USDBK777Token.sol

Security

Selfdestruct:

Use of selfdestruct: Can block calling contracts unexpectedly. Be especially careful if this contract is
planned to be used by other contracts (i.e. library contracts, interactions). Selfdestruction of the
callee contract can leave callers in an inoperable state.

more

Pos: 106:9:

Gas & Economy

Gas costs:

Gas requirement of function USDBK77 7 Token.destroy is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 104:5:

Gas costs:

Gas requirement of function USDBK77 7 Token.revokeGlobalOperator is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this includes clearing or
copying arrays in storage)

Pos: 140:5:

Gas costs:

Gas requirement of function USDBK77 7 Token.send is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage {this includes clearing or copying arrays in storage)

Pos: 224:5:

Gas costs:

Gas requirement of function ERCY77.burn is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 251:5:

Gas costs:

Gas requirement of function USDBK7 77 Token.batchBalanceOf is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in

storage)
Pos: 300:5:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs:

Gas requirement of function ERC777 .operatorBurn is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 467:5:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 367:9:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 427:9:

Miscellaneous

Constant/View/Pure functions:

|OperatorTransferAnyERC20Token.operator TransferAnyERC20Token(address,address,uint256) :
Potentially should be constant/view/pure but is not.

more

Pos: 14:4:

Similar variable names:

USDBK7 77 Token.operatorBatchMint{address[],uint256[],bytes,bytes) : Variables have very similar
names "recipient" and "recipients".
Pos: 397:33:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 336:9:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

BKD777Token.sol

Error: Parse error: missing ';
:96:18: Error: Parse error: missing ';
:256:18: Error: Parse error: missing ';
:282:18: Error: Parse error: missing
:1300:18: Error: Parse error: missing
:1321:18: Error: Parse error: missing
:1414:22: Error: Parse error: missing

BKD777Token.s
BKD777Token.s
BKD777Token.

BKD777Token.s

O

1)

0 n O
(@)
= = = = [~

O O

BKD777Token.
BKD777Token.s
BKD777Token.s

n 0
o O
=

RedemptionController.sol

RedemptionController. 2:1: Error: Compiler version >=0.8.2

does not satisfy the emver requirement
RedemptionController.sol:330:9: Error: Avoid using inline assembly.
It is acceptable only i r

RedemptionController.s 4

It is acceptable only in r

RedemptionController.sol:1 : Error: Explicitly mark visibility in
function (Set ignoreConstr s to true if using solidity >=0.7.0)
RedemptionController.sol: : : Error: Avoid to make time-based
decisions in your business logic

decisions in your business logic

RedemptionController.sol:1614:86: Error: Avoid to make time-based
decisions 1in your business logic

cases

Error: Avoid using inline assembly.

USDBK777Token.sol

USDBK777Token.sol:2:1: Error: Compiler version >=0.8.2 <0.9.0 doe
not satisfy the r semver requirement
USDBK777Token.sol:80:5: Error: Explicitly mark visibility in function

(Set ignoreConstructors to true if using solidity >=0.7.0)
USDBK777Token.s0l1:230:9: Error: Check result of "send" call

Overall Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

