
Project: Telegraph
Platform: Ethereum
Language: Solidity
Date: October 24th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………. 6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 22

● Solidity static analysis ….……………………………………………………………….. 25

● Solhint Linter …………………………………………………………………….……….. 30

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Telegraph protocol to perform the Security audit of the
Telegraph protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on October 24th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Telegraph is a platform where anyone can become a node by paying fees. Fee is an

ERC20 token.

Audit scope

Name Code Review and Security Analysis Report for
Telegraph Protocol Smart Contracts

Platform Ethereum / Solidity

File 1 Telegraph.sol

File 1 MD5 Hash 138A457D6BFA2408052EE5268F1FBB1A

File 2 PortContract.sol

File 2 MD5 Hash 8185CC78831CD45D8D3485E7B5EED51E

Audit Date October 24th, 2022

https://etherscan.io/address/0x02E85FaA459b499eb40C96dd97D8d427BabbaDA6#code
https://etherscan.io/address/0x065930b78137fc937914d4900281e3df14be229e#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 PortContract.sol
● Name: Telegraph

● Symol: MSG

● Decimals: 18

● These contracts can set below addresses and

values:

○ Set the threshold

○ Entrance fees

○ Bridge address

○ Chain identification

○ Contract status

○ Fee Destinations

○ Distribution Contract

○ Price Mapping

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Telegraph Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Telegraph Protocol.

The Telegraph team has provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a Telegraph smart contract code in the form of an etherscan weblink. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Telegraph.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 fallback external Passed No Issue

PortContract.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 ERCProxyConstructor internal Passed No Issue
3 name read Passed No Issue
4 symbol read Passed No Issue
5 decimals read Passed No Issue
6 totalSupply read Passed No Issue
7 balanceOf read Passed No Issue
8 transfer write Passed No Issue
9 allowance read Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 _transfer internal Passed No Issue
15 _mint internal Passed No Issue
16 _burn internal Passed No Issue
17 _approve internal Passed No Issue
18 _beforeTokenTransfer internal Passed No Issue
19 setOwnableConstructor internal Passed No Issue
20 owner read Passed No Issue
21 onlyOwner modifier Passed No Issue
22 renounceOwnership write access only Owner No Issue
23 transferOwnership write access only Owner No Issue
24 updateCodeAddress internal Passed No Issue
25 proxiableUUID write Passed No Issue
26 proxyConstructor write Duplicate Code, Function

input parameters lack of
check, Anyone can
initialize contract

Refer Audit
Findings

27 updateCode write Function input parameters
lack of check

Refer Audit
Findings

28 receive external Passed No Issue

29 setThreshold write Function input parameters
lack of check, Other
Programming Issue

Refer Audit
Findings

30 testEvent write For testing only No Issue
31 setEntryFees write Infinite loops possibility,

Function input parameters
lack of check, Other
Programming Issue

Refer Audit
Findings

32 setFeeDestinations write Infinite loops possibility,
Other Programming Issue

Refer Audit
Findings

33 setBridgeAddress write Function input parameters
lack of check, Other
Programming Issue

Refer Audit
Findings

34 setChainId write Function input parameters
lack of check, Other
Programming Issue

Refer Audit
Findings

35 setContractStatus write Function input parameters
lack of check, Other
Programming Issue

Refer Audit
Findings

36 setDistributionContract write Function input parameters
lack of check, Other
Programming Issue

Refer Audit
Findings

37 setPriceMapping write Function input parameters
lack of check, Other
Programming Issue

Refer Audit
Findings

38 addSigner write Critical operation lacks
event log, Function input
parameters lack of check

Refer Audit
Findings

39 ownerAddSigner write For testing only,
Function input parameters

lack of check

Refer Audit
Findings

40 emptySigners write Passed No Issue
41 outboundMessage write Function input parameters

lack of check
Refer Audit

Findings
42 mintReward internal Passed No Issue
43 updateTokenReward internal Passed No Issue
44 determineFeeInCoin read Passed No Issue
45 getEstimatedStableforCoin read Passed No Issue
46 getPathForCointoStable read Passed No Issue
47 inboundMessage internal Passed No Issue
48 executeInboundMessage write Passed No Issue
49 signatureCheck internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Infinite loops possibility: PortContract.sol

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

● setEntryFees() - _address.length

● setFeeDestinations() - _address.length

(2) Critical operation lacks event log: PortContract.sol

Missing event log for:

● addSigner

Resolution: Write an event log for listed events.

(3) Function input parameters lack of check: PortContract.sol

Variable validation is not performed in below functions:

Functions are:

● ownerAddSigner = _signer

● addSigner = _signer , _feeAddress

● setBridgeAddress = _address

● setContractStatus = _contract

● setPriceMapping = price

● setThreshold = _threshold

● updateCode = newCode

● proxyConstructor = entryAddress, entryFee

● outboundMessage

● setEntryFees = _address

● setChainId =_chainId

● setDistributionContract = _contract

Resolution: We advise to put validation: integer type variables should be greater than 0

and address type variables should not be address(0). For percentage type variables,

values should have some range like minimum 0 and maximum 100.

Very Low / Informational / Best practices:

(1) SafeMathInt, SafeMathUint, SafeMath Library: PortContract.sol

SafeMathInt, SafeMathUint, SafeMath Libraries are used in this contract code, but the

compiler version is greater than or equal to 0.8.0, Then it will be not required to use,

solidity automatically handles overflow/underflow.

Resolution: Remove the SafeMathInt, SafeMathUint, SafeMath libraries and use normal

math operators, It will improve code size, and less gas consumption.

(2) Multiple pragma: PortContract.sol

There are multiple pragmas with different compiler versions.

Resolution: We suggest using only one pragma and removing the other.

(3) Warning: SPDX license identifier: PortContract.sol

Warning: SPDX license identifier not provided in source file.

Resolution: We suggest adding SPDX-License-Identifier.

(4) Unused libraries, function: PortContract.sol

There are SafeMathUint and SafeMathInt libraries defined, but not used anywhere.

Resolution: Remove unused libraries, irrelevant functions and their events from the code.

(5) Anyone can initialize contract: PortContract.sol

A proxyConstructor function is public and accessible to anyone, So any user can become

an owner.

Resolution: We suggest always making sure that the contract should be initialized by an

admin.

(6) Other Programming Issue: PortContract.sol

Below All listed functions are public and anyone can access them. Though for access

control there is signatureCheck function, once the signature is verified the user can update

values all time.

● setThreshold

● setEntryFees

● setFeeDestinations

● setBridgeAddress

● setChainId

● setContractStatus

● setDistributionContract

● setPriceMapping

Resolution: We suggest always making sure that the set function values are updates / set

by the owner only. If it’s a desired feature then disregard this issue.

(7) Duplicate Code: PortContract.sol

There is duplication of feeDestinations push address in proxyConstructor() functions.

Resolution: We suggest removing duplicate code from function.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● updateCode: Owner can update a new code address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of an etherscan weblink. And we have used all

possible tests based on given objects as files. We have observed 3 low severity issues

and some informational issues in the smart contracts. But those are not critical ones. So
smart contracts are ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Telegraph Protocol

Telegraph Diagram

PortContract Diagram

Slither Results Log

Slither log >> Telegraph.sol

Slither log >> PortContract.sol

Solidity Static Analysis
Telegraph.sol

PortContract.sol

Solhint Linter

Telegraph.sol

Telegraph.sol:11:1: Error: Compiler version ^0.8.0 does not satisfy
the r semver requirement
Telegraph.sol:18:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Telegraph.sol:21:24: Error: Variable name must be in mixedCase
Telegraph.sol:21:44: Error: Avoid using low level calls.
Telegraph.sol:21:24: Error: Variable "__" is unused
Telegraph.sol:27:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

PortContract.sol

PortContract.sol:7:1: Error: Compiler version ^0.8.4 does not satisfy
the r semver requirement
PortContract.sol:434:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PortContract.sol:439:5: Error: Function name must be in mixedCase
PortContract.sol:693:24: Error: Code contains empty blocks
PortContract.sol:698:1: Error: Compiler version ^0.8.7 does not
satisfy the r semver requirement
PortContract.sol:706:5: Error: Function name must be in mixedCase
PortContract.sol:865:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PortContract.sol:924:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
PortContract.sol:950:1: Error: Contract has 24 states declarations
but allowed no more than 15
PortContract.sol:965:5: Error: Contract name must be in CamelCase
PortContract.sol:971:9: Error: Variable name must be in mixedCase
PortContract.sol:977:5: Error: Contract name must be in CamelCase
PortContract.sol:1002:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
PortContract.sol:1002:46: Error: Code contains empty blocks
PortContract.sol:1018:27: Error: Avoid to make time-based decisions
in your business logic
PortContract.sol:1035:32: Error: Code contains empty blocks
PortContract.sol:1143:29: Error: Avoid to make time-based decisions
in your business logic
PortContract.sol:1147:31: Error: Avoid to make time-based decisions
in your business logic
PortContract.sol:1153:31: Error: Avoid to make time-based decisions
in your business logic
PortContract.sol:1172:53: Error: Use double quotes for string
literals
PortContract.sol:1189:13: Error: Avoid to make time-based decisions

in your business logic
PortContract.sol:1190:31: Error: Avoid to make time-based decisions
in your business logic
PortContract.sol:1256:47: Error: Avoid to make time-based decisions
in your business logic
PortContract.sol:1257:34: Error: Avoid to make time-based decisions
in your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

