@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: NANXA Token

Website: htips://nanxa.com
Platform: Binance Smart Chain
Language: Solidity

Date: August 25th, 2022

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 10
AUt FINAINGS oo e 11
@70 o T3 1017 T o 14
(@ 0] 1Y/ =1 1 T To [o] 0T) 15
DISCIAIMEIS ... e 17
Appendix
o Code FIoW Diagramououoiiii s 18
o Shther RESUIS LOGuiiiiii e 19
e Solidity staticanalysis ... 21
® SOININt LiNtEr oo 23

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the NANXA team to perform the Security audit of the
NANXA Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on August 25th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
NANXA coin is a standard BEP20 token smart contract. This audit only considers NANXA

coin token smart contracts, and does not cover any other smart contracts on the platform.

Audit scope
Name Code Review and Security Analysis Report for
NANXA Token Smart Contract
Platform BSC / Solidity
File NANXA.sol
File MD5 Hash AD9C8A0923042C6BAES53E740DF4EDCA
Audit Date August 25th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x9A3C7F233a666026b5c90097309BdBB9c5561ad9#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics: YES, This is valid.
e Name: NANXA
e Symbol: NANXA
e Decimals: 18
e Marketing Fee: 3%
e Maximum Marketing Fee: 5%
e totalsupply: 100 million
e Swap Tokens at Amount: 20000

e Maximum Transaction Amount: 100 Million

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed

Function input parameters lack of check
Function input parameters check bypass Passed
Function access control lacks management Passed

Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues

Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the NANXA Token are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the NANXA Token.

The NANXA Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a NANXA Token smart contract code in the form of a BSCScan web

link.The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented on. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 [name read Passed No Issue
7 | symbol read Passed No Issue
8 [decimals read Passed No Issue
9 | totalSupply read Passed No Issue
10 | balanceOf read Passed No Issue
11 | transfer write Passed No Issue
12 | allowance read Passed No Issue
13 | approve write Passed No Issue
14 | transferFrom write Passed No Issue
15 | increaseAllowance write Passed No Issue
16 | decreaseAllowance write Passed No Issue
17 | transfer internal Passed No Issue
18 | createTSupply internal Passed No Issue
19 | approve internal Passed No Issue
20 | beforeTokenTransfer internal Passed No Issue
21 | lockTheSwap modifier Passed No Issue
22 | transfer internal Passed No Issue
23 | swapTokensForBNB write Passed No Issue

24 | excludeFromFees write Function input parameters | Refer Audit
lack of check Findings
25 | isExcludedFromFees read Passed No Issue

26 | setSwapTokensAtAmount | external Critical operation lacks Refer Audit
event log, Function input Findings

parameters lack of check

27 | setSwapEnabled write access only Owner No Issue

28 | setMarketingWallet external Critical operation lacks Refer Audit
event log, Function input Findings

parameters lack of check

29 | setFee write Critical operation lacks Refer Audit
event log Findings

30 | setMaxTransaction write Critical operation lacks Refer Audit
event log,Function input Findings

parameters lack of check

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:
(1) Critical operation lacks event log:
Missing event log for:

e setSwapTokensAtAmount()
e setMarketingWallet()
e setFee()

e setMaxTransaction()
Resolution: Please write an event log for listed events.

(2) Unlocked Compiler Version:

pragma solidity ©.8.16;

The contract uses the "A" prefix specifier, Use the Unlocked compiler version. Unlocked
compiler version code of the smart contract, and that gives permission to the users to

compile it one higher than a particular version.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We suggest using that the compiler version is unlocked instead of the locked

compiler version. The following line of code can be added to the project:
pragma solidity 0.8.16;
(3) SafeMath Library:

SafeMath Library is used in this contract code, but the compiler version is greater than or
equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

(4) Function input parameters lack of check:

Some functions require validation before execution.
Functions are:

e excludeFromFees()
e setSwapTokensAtAmount()
e setMarketingWallet()

e setMaxTransaction()

Resolution: We suggest using validation like for numerical variables that should be

greater than 0 and for address type check variables that are not address(0).

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.
Following are Admin functions:

e excludeFromFees: Owner can exclude fees from address.

e setSwapTokensAtAmount: Owner can set swap token at amount.

e setSwapEnabled: Owner can set swap enabled status.

e setMarketingWallet: Owner can set marketing wallet address.

e setFee: Owner can set fee.

e setMaxTransaction: Owner can set maximum transaction amount.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a bscscan.com link and we have used all
possible tests based on given objects as files. We have not observed any major issues in

the token smart contract. So, it’s good to go for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

[

Code Flow Diagram - NANXA Token

(©) nanxa

ERC20
Ownable

inSafeMath for uint?56

O bool inSwap

© bool swapEnabled

O IUniswap'/2Router02 uniswap'/2Router
© gddress uniswap\/2Pair

O uint256 marketingFee

© gddress marketingvVallet

© uint256 maxTransactionAmount

O Lit256 swapTokensAtAmount

O agddress==bool _isExcludedFromFess

@ _ constructor__()

< _transfer()

B swapTokensForBMB()

@ excluceFromFees()

@ QisExcludedFromFees()

@ setSwapTokensAtAmount()
@ setSwapEnabled()

@ setMarketingvVallet()

| © setFee()

/| @ setMaxTransaction()

|

(©) ercao

/
© Ownable

Context

O address _owner

Context
IERC20

@nSafeMath for uint256

O address=

irt256 _balances

O address=>mapping address=>uint256 _allowances

O uint256 _totalSupply
O string _name

O string _symbol

O uirtd _decimals

@ __constructor__()
@ Qowner()
@ renouncelwnership()

@ transferOwnership()
v

@ __construetor__()
@ Qname()

@ Qsymbol()

@ Qdecimals()

@ QiotalSupply()

@ QbalanceOf()

@ transfer()

@ Qallowance()

@ approvel()

@ transferFrom()

@ increaseAllowance()
@ decreaseAllowance()
< _transfer()

< _createTSupply()

< _approve()

< _peforeTokenTransfer()

” &l
/ \

@) iercao

©. Context

® QtotalSupply()

< Q,_msgSender()
© _msgDatal)

@ QhalanceOf()
@ transfer()
@ Qallowance()

@ approve()
@ transferFrom()

Qv

@ [UniswapV2Router02

@ IUniswapV 2Faciory

LiniswapV2Router?]

@ removeLiguidityETHSupportingFeeOnTransferTokens()

@ removeLiguidityETHWRhPermitSupportingF eeCnTransferTokens(
@ swapExactTokensForTokensSupportingFeeOnTransfer Tokens()
@ dswapExactETHForTokensSupportingFeeOnTransferTokens()
© swapExactTokensForETHSupportingFee0nTransferTokens()

)

|
\for uint256
]

Ay
\for wint256 :

@ SafelMath|

< Qaddp)
< Qusubl)
< aumull)
< adiv()
< Qumod()

@ [UniswapV2Router01

@ Qfactory()

@ QNETH()

@ addLiguicity()

© daddLiquidityETH()

@ removeliguidity()

@ removeliguicityETH()

@ removeLiguicityVVithPermit()

@ removeliguidityETHWthPermit()
@ swapExactTokensForTokens()
@ swapTokensForExactTokens()
@ @swapExactETHForTokens()
@ swapTokensForExactETH()

@ swapExactTokensForETH()

@ @swapETHForExactTokens()
@ Qouote()

@ QgetAmountOut()

@ QgetAmounting)

@ QgetAmourtsOut()

@ QgetAmountsing)

@ QfeeTo()

© QfeeToSetter()
@ QgetPair()

@ QuallPairs()

@ QallPairsLength()
@ createPair()

@ setFeeTo()

@ setFeeToSetter()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> NANXA.sol

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in NANXA.swapTokensForBNB(uint256,address): Could
potentially lead to re-entrancy vulnerability. Note: Madifiers are currently not considered by this static analysis.
more

Pos: 610:4:

Block timestamp:

Use of "block.timestamp™: "block timestamp" can be influenced by miners to a certain degree. That means that a
miner can "choose" the block.timestamp, to a certain degree, to change the outcome of a transaction in the mined
block.

more

Pos: 626:12:

Gas & Economy

Gas costs:

Gas requirement of function NANXA.setSwapEnabled is infinite: If the gas requirement of a function is higher
than the block gas Limit, it cannot be executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 645:4:

Gas costs:

Gas requirement of function NANXA setMaxTransaction is infinite: If the gas requirement of a function is higher
than the block gas Limit, it cannot be executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 659:4:

Miscellaneous

Constant/View/Pure functions:

IUniswapV2RouterO1.removeliquidityETH(address,uint256,uint256,uint256,address,uint256) : Potentially should
be constant/view/pure but is not. Note: Modifiers are currently not considered by this static analysis.

maore

Pos: 400:4:

Constant/View/Pure functions:

IUniswapV2Router01.removeliquidityWithPermit(address,address,uint256,uint256,uint256,address,uint256,bool,uint8,
: Potentially should be constant/view/pure but is not. Note: Modifiers are currently not considered by this static

analysis.

more

Pos: 408:4:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Constant/View/Pure functions:

IUniswapVZ2RouterO1.swapExactTokensForETH(uint256,uint256,address[].address,uint256) : Potentially should
be constant/view/pure but is not. Note: Modifiers are currently not considered by this static analysis.

more

Pos: 448:4:

Constant/View/Pure functions:

IlUniswapV2Factory.setFeeTo(address) : Potentially should be constant/view/pure but is not. Note: Modifiers are
currently not considered by this static analysis.

more

Pos: 516:4:

Constant/View/Pure functions:

IUniswapV2Factory.setFeeToSetter(address) : Potentially should be constant/view/pure but is not. Note: Modifiers
are currently not considered by this static analysis.

more

Pos: 517:4:

Similar variable names:

ERC20._createTSupply(address,uint256) : Variables have very similar names "account” and "amount". Note:
Modifiers are currently not considered by this static analysis.
Pos: 347:43:

No return:

IUniswapV2Factory.createPair(address,address): Defines a return type but never explicitly returns a value.
Pos: 514:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your code). Use
"require(x)" if x can be false, due to e.g. invalid input or a failing external component.

more

Pos: 655:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your code). Use
"require(x)" if x can be false, due to e.g. invalid input or a failing external component.

more

Pos: 661:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = O instead of 0.1 since the
result is an integer again. This does not hold for division of (only) literal values since those yield rational
constants.

Pos: 161:20:

is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

NANXA. sol

NANXA.s0l:25:1: Error: Compiler version 0.8.16 does not tisfy the
semver requirement

NANXA.s0l:51:5: Error: Explicitly mark visibility in function (Set
ignoreConstruc foxs to true if using solidity >=0.7.0)
NANXA.s01:220:5: Error: Explicitly mark visibility in function
1gnmlegon5TIUptmrs to true if using solidity >=0.7.0)

(A.s01:365:94: Error: Code contains empty blocks
\.s501:371:5: Error: Function name must be in mixedCase
.501:546:5: Error: Explicitly mark visibility in function
1qnore(onsfrnctOLq to true if using solidity >=0.7.0)
XA.sol: 6:13: Error: Avoid to make time-based decisions in

Software analysis result:

These software reported many false positive results and some are informational issues.
So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

