
Project: Lynx Finance
Website: https://lynxfinance.net
Platform: Avalanche
Language: Solidity
Date: December 17th, 2022

https://lynxfinance.net

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 25

● Solhint Linter …………………………………………………………………….……….. 29

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the Lynx Finance team to perform the Security audit of
the Lynx Finance smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on December 17th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● LYNX Finance offers the $LYNX token.

● $LYNX is a deflationary token on Avalanche (holders will receive rewards in

USDC.e).

● Lynx Contracts have functions like swapping, launch, etc.

Audit scope

Name Code Review and Security Analysis Report for Lynx
Token Smart Contract

Platform Avalanche / Solidity

File Lynx.sol

File MD5 Hash E9E74FA846B45592998B4A10C0588BCE

Updated File MD5 Hash 0B0E0DED38AC3A1D13F5570F4A10BA01

Online Code Link https://github.com/Volfsorg/Lynx/blob/main/Lynx.sol

Audit Date December 17th, 2022

Revised Audit Date December 22nd, 2022

https://github.com/Volfsorg/Lynx/blob/main/Lynx.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: Lynx

● Symbol: LYNX

● Decimals: 18

● Total Supply: 100 Million $LYNX

YES, This is valid.

Buy Fee: 10%
● Burn Fee: 5%

● Treasury Fee: 4%

● Dev Fee: 1%

Sell Fee: 15%
● Reward Fee: 10%

● Burn Fee: 2%

● Treasury Fee: 2%

● Dev Fee: 1%

YES, This is valid.

Ownership Control:
● Owner can launch only once.

● Owner can set transfer enabled status.

YES, This is valid.

Authorized Control:
● Authorized can set swap settings.

● Authorized can set distributor gas settings.

● Authorized can set a new distributor.

● Authorized can set distribution addresses.

● Authorized can set distribution criteria.

● Authorized can set dex pair addresses.

● Authorized can set treasury fee receiver,

developer fee receiver.

● Authorized can set transfer fees, sell fees,

YES, This is valid.

buy fees.

● Authorized can set reflection token

addresses.

Other Specifications:
● Fee Denominator: 1000

● Swap Maximum: 1%

● Launch Price: $0.0015

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 0 high, 0 medium and 3 low and some very low level issues.
All the issues have been resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: Passed

Code Quality
This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Lynx Finance are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Lynx Token.

The Lynx Finance team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given a Lynx Token smart contract code in the form of a Github weblink. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented on. But the logic is

straightforward. So it is easy to quickly understand the programming flow as well as

complex code logic. Comments are very helpful in understanding the overall architecture

of the protocol.

Another source of information was its website: https://lynxfinance.net/ which provided rich

information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://lynxfinance.net/

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 receive external Passed No Issue
3 checkTxLimit internal Passed No Issue
4 launched internal Passed No Issue
5 _basicTransfer internal Passed No Issue
6 _transferFrom internal Passed No Issue
7 shouldTakeFee internal Passed No Issue
8 takeFee internal Passed No Issue
9 shouldSwapBack internal Passed No Issue

10 swapBack internal Passed No Issue
11 buyTokens internal Removed No Issue
12 allowance external Passed No Issue
13 approve write Passed No Issue
14 approveMax external Passed No Issue
15 balanceOf read Passed No Issue
16 decimals external Passed No Issue
17 name external Passed No Issue
18 symbol external Passed No Issue
19 totalSupply external Passed No Issue
20 transfer external Passed No Issue
21 transferFrom external Passed No Issue
22 getCirculatingSupply read Passed No Issue
23 getDexPair external Passed No Issue
24 getDexPair2 external Passed No Issue
25 getDexPair3 external Passed No Issue
26 getIsFree read access only Owner No Issue
27 getMinDistribution external Passed No Issue
28 getMinPeriod external Passed No Issue
29 getOwner external Passed No Issue
30 getReflectionToken external Passed No Issue
31 getSwapAmount read Passed No Issue
32 getTotalBuyFee read Passed No Issue
33 getTotalSellFee read Passed No Issue
34 getTotalTransferFee read Passed No Issue
35 launch write access only Owner No Issue
36 swapBackManual external access only authorized No Issue
37 sweep external Removed No Issue
38 setReflectionToken external access only authorized No Issue
39 setTransferEnabled write access only Owner No Issue
40 setMaxWallet external access only authorized No Issue
41 setTxLimit external access only authorized No Issue
42 setBuyFees external Passed No Issue

43 setSellFees external Passed No Issue
44 setTransferFees external Passed No Issue
45 setFeeReceivers external access only authorized No Issue
46 setFree write access only Owner No Issue
47 unSetFree write access only Owner No Issue
48 setIsDividendExempt external access only authorized No Issue
49 setIsFeeExempt external access only authorized No Issue
50 setIsTxLimitExempt external access only authorized No Issue
51 setDexPair external access only authorized No Issue
52 setDexPair2 external access only authorized No Issue
53 setDexPair3 external access only authorized No Issue
54 setDistributionCriteria external access only authorized No Issue
55 setDistributorAddress external access only authorized No Issue
56 setNewDistributor external access only authorized No Issue
57 setDistributorSettings external access only authorized No Issue
58 setSwapBackSettings external access only authorized No Issue
59 swapping modifier Passed No Issue
60 onlyOwner modifier Passed No Issue
61 authorized modifier Passed No Issue
62 authorize write Passed No Issue
63 unauthorize write Passed No Issue
64 isAuthorized read Passed No Issue
65 isOwner read Passed No Issue
66 renounceOwnership write access only Owner No Issue
67 transferOwnership write access only Owner No Issue
68 initialization modifier Removed No Issue
69 onlyToken modifier Passed No Issue
70 claimDividend external Passed No Issue
71 deposit external Passed No Issue
72 distributeDividend internal Passed No Issue
73 process external Passed No Issue
74 shouldDistribute internal Passed No Issue
75 getCumulativeDividends internal Passed No Issue
76 getMinDistribution external Passed No Issue
77 getMinPeriod external Passed No Issue
78 getUnpaidEarnings read Passed No Issue
79 setDistributionCriteria external Passed No Issue
80 setReflectionToken external Passed No Issue
81 setShare external Passed No Issue
82 addShareholder internal Passed No Issue
83 removeShareholder internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

(1) Not renouncing the contract ownership:

This function should be used to renounce ownership so that the contract will be without an

owner. But here the owner does not get set by address(0). So this will do nothing.This

contract has always an owner.

Resolution: We suggest setting the owner to address(0) to renounce the contract

ownership.

Status: This issue is fixed in the revised contract code.

High Severity

No High severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) The owner can drain contract funds:

By using a sweep function the owner can drain contract funds.

Resolution: We suggest confirming this functionality.

Status: This issue is fixed in the revised contract code.

(2) Function input parameters lack of check:

Some functions require validation before execution.

Functions are:

LynxAuthorization

● authorize() - onlyOwner

● unauthorize()

LynxDividendDistributor

● setDistributionCriteria() - onlyToken

● setReflectionToken() - onlyToken

Resolution: We suggest using validation like for numerical variables that should be

greater than 0 and for address type check variables that are not address(0).

Status: This issue is fixed in the revised contract code.

(3) Critical operation lacks event log:

Missing event log for:

LynxDividendDistributor

● claimDividend()

● deposit() - onlyToken

● process() - onlyToken

● setShare() - onlyToken

Lynx

● setBuyFees() - authorized

● setSellFees() - authorized

● setTransferFees() - authorized

Resolution: Please write an event log for listed events.

Status: This issue is fixed in the revised contract code.

Very Low / Informational / Best practices:

(1) SafeMath Library:

SafeMath Library is used in this contract code, but the compiler version is greater than or

equal to 0.8.0, Then it will be not required to use, solidity automatically handles

overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

Status: This issue is fixed in the revised contract code.

(2) Unused function parameter: - LynxAuthorization

There is a function renounceOwnership() that asks the parameter "newOwner" but it's not

required and not used in this function, because in this function newOwner will always be

address(0).

Resolution: We suggest removing parameters from these function calls.

Status: This issue is fixed in the revised contract code.

(3) Unused modifier / Internal function / variable:

LynxDividendDistributor

The initialization() modifier is defined but not used.

The initialized variable has been set but not used anywhere.

Lynx

There are some internal functions defined but not used:

● launched()

Resolution: We suggest removing unused modifier / Internal function / variable.

Status: This issue is fixed in the revised contract code.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● getIsFree: Owner can check if the holder address is free or not.

● launch: Owner can launch only be called 1 time.

● swapBackManual: Authorized can swap back manual amount.

● setReflectionToken: Authorized can set reflection token address.

● setTransferEnabled: Owner can set transfer enabled status.

● setMaxWallet: Authorized can set maximum wallet amount.

● setTxLimit: Authorized can set transaction limit amount.

● setBuyFees: Authorized can set buy reflection fee, buy burn fee, buy treasury fee,

buy developer fee.

● setSellFees: Authorized can set sell reflection fee, sell burn fee, sell treasury fee,

sell developer fee.

● setTransferFees: Authorized can set transfer reflection fee, transfer burn fee,

transfer treasury fee, transfer developer fee.

● setFeeReceivers: Authorized can set treasury fee receiver, developer fee receiver.

● setFree: Owner can set free holder address.

● unSetFree: Owner can unset free holder address.

● setIsDividendExempt: Authorized can set if it is dividend exempt status.

● setIsFeeExempt: Authorized can set if it is fee exempt status.

● setDexPair: Authorized can set dex pair address.

● setDexPair2: Authorized can set dex pair 2 address.

● setDexPair3: Authorized can set dex pair 3 address.

● setDistributionCriteria: Authorized can set distribution criteria.

● setDistributorAddress: Authorized can set distribution address.

● setNewDistributor: Authorized can set new distributor.

● setDistributorSettings: Authorized can set distributor gas settings.

● setSwapBackSettings: Authorized can set swap settings.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a Github weblink. And we have used all

possible tests based on given objects as files. We have observed 1 critical, 3 low severity

issues and some informational issues in the smart contracts. All the issues have been
resolved in the revised code. So the smart contract is ready for the mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Lynx Finance

Slither Results Log
Slither Log >> Lynx.sol

Solidity Static Analysis
Lynx.sol

Solhint Linter

Lynx.sol

Lynx.sol:107:18: Error: Parse error: missing ';' at '{'
Lynx.sol:120:18: Error: Parse error: missing ';' at '{'
Lynx.sol:132:18: Error: Parse error: missing ';' at '{'
Lynx.sol:149:18: Error: Parse error: missing ';' at '{'
Lynx.sol:161:18: Error: Parse error: missing ';' at '{'
Lynx.sol:253:18: Error: Parse error: missing ';' at '{'
Lynx.sol:272:18: Error: Parse error: missing ';' at '{'
Lynx.sol:294:18: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

