
Project: JustCause Finance
Website: www.justcause.finance
Platform: Polygon Network
Language: Solidity
Date: July 19th, 2022

https://www.justcause.finance/#/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 17

Our Methodology ………………………………………………………………………………... 18

Disclaimers ………………………………………………………………………………………. 20

Appendix

● Code Flow Diagram ……………………………………………………………………... 21

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 29

● Solhint Linter …………………………………………………………………….……….. 33

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by JustCause Protocol to perform the Security audit of the
JustCause Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on July 19th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● JustCause is a crowdfunding platform having functionalities like pool creation,

deposit, withdraw, and claim.

● The JustCauseProtocol contract inherits the ERC721URIStorageUpgradeable,

Initializable, ReentrancyGuard, Clones standard smart contracts from the

OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
JustCause Protocol Smart Contracts

Platform Polygon / Solidity

File 1 JCDepositorERC721.sol

File 1 MD5 Hash 3A66C8A87CE303E274DA0F8271582DD8

File 2 JustCausePool.sol

File 2 MD5 Hash 830D9093E6932775E4809C4774452269

Updated File 2 MD5 Hash 7645BE6D2F6B5789F993C4BF5193F9DA

File 3 PoolTracker.sol

File 3 MD5 Hash 7BE2DE8EEC1F7E3E543326F72103CA9F

Updated File 3 MD5 Hash 10E88A24059B3275A99983BEA3D0AA6B

Audit Date July 19th,2022

Revise Audit Date July 20th,2022

https://github.com/smeee23/just_cause/blob/main/contracts/polygon/JCDepositorERC721.sol
https://github.com/smeee23/just_cause/blob/main/contracts/polygon/JustCausePool.sol
https://github.com/smeee23/just_cause/blob/main/contracts/polygon/PoolTracker.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 JCDepositorERC721.sol
● Name: JCP Contributor Token

● Symbol: JCPC

● Owner can add new Fund Tokens.

YES, This is valid.

File 2 JustCausePool.sol
● Owner can set a new reference for the pool.

● Owner can set a meta URI.

YES, This is valid.

File 3 PoolTracker.sol
● PoolTracker has functions like: addDeposit,

withdrawDeposit, claimInterest, etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.
All the issues have been resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the JustCause Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the JustCause Protocol.

The JustCause team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are well commented on smart contracts. We suggest using Ethereum’s

NatSpec style for the commenting.

Documentation

We were given a JustCause Protocol smart contract code in the form of a Github weblink.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website https://www.justcause.finance/ which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://www.justcause.finance/#/

AS-IS overview

JCDepositorERC721.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __ERC721URIStorage_in

it
internal access only

Initializing
No Issue

3 __ERC721URIStorage_in
it_unchained

internal access only
Initializing

No Issue

4 tokenURI read Passed No Issue
5 _setTokenURI internal Passed No Issue
6 _burn internal Passed No Issue
7 onlyPoolTracker modifier Passed No Issue
8 initialize write access only Initializer No Issue
9 addFunds write access only Pool

Tracker
No Issue

10 withdrawFunds external access only Pool
Tracker

No Issue

11 getDepositInfo read Passed No Issue
12 getUserBalance read Passed No Issue
13 getUserTokens external Passed No Issue
14 getPool read Passed No Issue
15 _beforeTokenTransfer internal Passed No Issue
16 tokenURI read Passed No Issue

JustCausePool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 onlyAllowedTokens modifier Passed No Issue
7 onlyReceiver modifier Passed No Issue
8 onlyPoolTracker modifier Passed No Issue
9 strLength modifier Passed No Issue

10 initialize external Passed No Issue
11 deposit external access only Pool

Tracker
No Issue

12 withdraw external access only Pool
Tracker

No Issue

13 withdrawDonations external access only Pool
Tracker

No Issue

14 calcSplit internal Passed No Issue
15 setAbout external access only Receiver No Issue
16 setMetaUri external access only Receiver No Issue
17 getAcceptedTokens external Passed No Issue
18 getName external Passed No Issue
19 getAbout external Passed No Issue
20 getPicHash external Passed No Issue
21 getMetaUri external Passed No Issue
22 getIsVerified external Passed No Issue
23 getRecipient external Passed No Issue
24 getERC721Address external Passed No Issue
25 getPoolInfo external Passed No Issue
26 getATokenAddress read Passed No Issue
27 getTotalDeposits read Passed No Issue
28 getUnclaimedInterest read Passed No Issue
29 getClaimedInterest read Passed No Issue
30 getATokenBalance read Passed No Issue
31 getReserveNormalizedIn

come
read Passed No Issue

32 getAaveLiquidityIndex read Passed No Issue
33 getPoolTokenInfo external Passed No Issue

PoolTracker.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 nonReentrant modifier Passed No Issue
3 _nonReentrantBefore write Passed No Issue
4 _nonReentrantAfter write Passed No Issue
5 onlyPools modifier Passed No Issue
6 onlyAcceptedTokens modifier Passed No Issue
7 onlyAcceptedToken modifier Passed No Issue
8 onlyMultiSig modifier Passed No Issue
9 addDeposit external access only Pools No Issue

10 withdrawDeposit external access only Pools No Issue
11 claimInterest external access only Pools No Issue
12 createJCPoolClone external access only Accepted

Tokens
No Issue

13 setBpFee write access only MultiSig No Issue
14 getBpFee read Passed No Issue
15 getTVL read Passed No Issue
16 getTotalDonated read Passed No Issue
17 getDepositorERC721Add

ress
read Passed No Issue

18 getReceiverPools read Passed No Issue
19 getMultiSig read Passed No Issue
20 getContributions read Passed No Issue
21 getPoolAddr read Passed No Issue
22 getReservesList read Passed No Issue
23 getBaseJCPoolAddress read Passed No Issue
24 getVerifiedPools read Passed No Issue
25 checkPool read Passed No Issue
26 getAddressFromName external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity
No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low
(1) High gas consuming loops: PoolTracker.sol

The modifiers onlyAcceptedTokens and onlyAcceptedToken have an unbound loop. This

does not create a major security or logical vulnerability, but it may hit the block’s gas limit if

there are high numbers of entries used in the loop.

Resolution: The best practice is to set a limit on the number of entries that are expected.

On another hand, this can be safely acknowledged that only a limited number of tokens

will be minted in a batch.

Status: Fixed

Very Low / Informational / Best practices:

(1) Unused event: PoolTracker.sol

Test event is defined but not used.

Resolution: We suggest removing unused events.

Status: Fixed

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setBpFee: PoolTracker owner can set the fixed rate of fees.

● setAbout: JustCausePool Receiver owner can set new reference for pool.

● setMetaUri: JustCausePool Receiver owner can update metaUri reference for pool.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a Github Weblink. And we have used all

possible tests based on given objects as files. We have not observed some issues in the

smart contracts and those issues have been resolved in the revised code. So, the smart
contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - JustCause Protocol

JCDepositorERC721 Diagram

JustCausePool Diagram

PoolTracker Diagram

Slither Results Log

Slither log >> JCDepositorERC721.sol

Slither log >> JustCausePool.sol

Slither log >> PoolTracker.sol

Solidity Static Analysis

JCDepositorERC721.sol

JustCausePool.sol

PoolTracker.sol

Solhint Linter

JCDepositorERC721.sol

JCDepositorERC721.sol:2:1: Error: Compiler version 0.8.9 does not
satisfy the r semver requirement
JCDepositorERC721.sol:58:28: Error: Avoid using low level calls.
JCDepositorERC721.sol:130:51: Error: Avoid using low level calls.
JCDepositorERC721.sol:206:13: Error: Avoid using inline assembly. It
is acceptable only in rare cases
JCDepositorERC721.sol:532:5: Error: Function name must be in
mixedCase
JCDepositorERC721.sol:532:57: Error: Code contains empty blocks
JCDepositorERC721.sol:535:5: Error: Function name must be in
mixedCase
JCDepositorERC721.sol:535:67: Error: Code contains empty blocks
JCDepositorERC721.sol:736:5: Error: Function name must be in
mixedCase
JCDepositorERC721.sol:736:56: Error: Code contains empty blocks
JCDepositorERC721.sol:739:5: Error: Function name must be in
mixedCase
JCDepositorERC721.sol:739:66: Error: Code contains empty blocks
JCDepositorERC721.sol:780:5: Error: Function name must be in
mixedCase
JCDepositorERC721.sol:784:5: Error: Function name must be in
mixedCase
JCDepositorERC721.sol:1148:21: Error: Avoid using inline assembly. It
is acceptable only in rare cases
JCDepositorERC721.sol:1176:24: Error: Code contains empty blocks
JCDepositorERC721.sol:1193:24: Error: Code contains empty blocks
JCDepositorERC721.sol:1204:5: Error: Function name must be in
mixedCase
JCDepositorERC721.sol:1204:66: Error: Code contains empty blocks
JCDepositorERC721.sol:1207:5: Error: Function name must be in
mixedCase
JCDepositorERC721.sol:1207:76: Error: Code contains empty blocks
JCDepositorERC721.sol:1276:5: Error: Explicitly mark visibility of
state
JCDepositorERC721.sol:1277:5: Error: Explicitly mark visibility of
state
JCDepositorERC721.sol:1280:5: Error: Explicitly mark visibility of
state
JCDepositorERC721.sol:1295:54: Error: Visibility modifier must be
first in list of modifiers

JustCausePool.sol

JustCausePool.sol:2:1: Error: Compiler version 0.8.9 does not satisfy
the r semver requirement
JustCausePool.sol:59:28: Error: Avoid using low level calls.
JustCausePool.sol:131:51: Error: Avoid using low level calls.

JustCausePool.sol:207:13: Error: Avoid using inline assembly. It is
acceptable only in rare cases
JustCausePool.sol:424:46: Error: Use double quotes for string
literals
JustCausePool.sol:427:54: Error: Use double quotes for string
literals
JustCausePool.sol:428:22: Error: Use double quotes for string
literals
JustCausePool.sol:444:21: Error: Use double quotes for string
literals
JustCausePool.sol:459:22: Error: Use double quotes for string
literals
JustCausePool.sol:500:25: Error: Use double quotes for string
literals
JustCausePool.sol:517:22: Error: Use double quotes for string
literals
JustCausePool.sol:556:22: Error: Use double quotes for string
literals
JustCausePool.sol:607:7: Error: Use double quotes for string literals
JustCausePool.sol:613:42: Error: Use double quotes for string
literals
JustCausePool.sol:617:22: Error: Use double quotes for string
literals
JustCausePool.sol:622:47: Error: Use double quotes for string
literals
JustCausePool.sol:1727:3: Error: Function name must be in mixedCase
JustCausePool.sol:1790:3: Error: Function name must be in mixedCase
JustCausePool.sol:1796:3: Error: Function name must be in mixedCase
JustCausePool.sol:1802:3: Error: Function name must be in mixedCase
JustCausePool.sol:1808:3: Error: Function name must be in mixedCase
JustCausePool.sol:1814:3: Error: Function name must be in mixedCase
JustCausePool.sol:1936:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1938:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1939:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1941:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1943:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1944:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1945:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1946:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1947:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1948:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1949:5: Error: Explicitly mark visibility of state
JustCausePool.sol:1998:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)

PoolTracker.sol

PoolTracker.sol:2:1: Error: Compiler version 0.8.9 does not satisfy
the r semver requirement
PoolTracker.sol:59:28: Error: Avoid using low level calls.
PoolTracker.sol:131:51: Error: Avoid using low level calls.
PoolTracker.sol:207:13: Error: Avoid using inline assembly. It is
acceptable only in rare cases
PoolTracker.sol:533:5: Error: Function name must be in mixedCase
PoolTracker.sol:533:57: Error: Code contains empty blocks

PoolTracker.sol:536:5: Error: Function name must be in mixedCase
PoolTracker.sol:536:67: Error: Code contains empty blocks
PoolTracker.sol:737:5: Error: Function name must be in mixedCase
PoolTracker.sol:737:56: Error: Code contains empty blocks
PoolTracker.sol:740:5: Error: Function name must be in mixedCase
PoolTracker.sol:740:66: Error: Code contains empty blocks
PoolTracker.sol:781:5: Error: Function name must be in mixedCase
PoolTracker.sol:785:5: Error: Function name must be in mixedCase
PoolTracker.sol:1149:21: Error: Avoid using inline assembly. It is
acceptable only in rare cases
PoolTracker.sol:1177:24: Error: Code contains empty blocks
PoolTracker.sol:1194:24: Error: Code contains empty blocks
PoolTracker.sol:1205:5: Error: Function name must be in mixedCase
PoolTracker.sol:1205:66: Error: Code contains empty blocks
PoolTracker.sol:1208:5: Error: Function name must be in mixedCase
PoolTracker.sol:1208:76: Error: Code contains empty blocks
PoolTracker.sol:1277:5: Error: Explicitly mark visibility of state
PoolTracker.sol:1278:5: Error: Explicitly mark visibility of state
PoolTracker.sol:1281:5: Error: Explicitly mark visibility of state
PoolTracker.sol:1296:54: Error: Visibility modifier must be first in
list of modifiers
PoolTracker.sol:1547:46: Error: Use double quotes for string literals
PoolTracker.sol:1550:54: Error: Use double quotes for string literals
PoolTracker.sol:1551:22: Error: Use double quotes for string literals
PoolTracker.sol:1567:21: Error: Use double quotes for string literals
PoolTracker.sol:1582:22: Error: Use double quotes for string literals
PoolTracker.sol:1623:25: Error: Use double quotes for string literals
PoolTracker.sol:1640:22: Error: Use double quotes for string literals
PoolTracker.sol:1679:22: Error: Use double quotes for string literals
PoolTracker.sol:1730:7: Error: Use double quotes for string literals
PoolTracker.sol:1736:42: Error: Use double quotes for string literals
PoolTracker.sol:1740:22: Error: Use double quotes for string literals
PoolTracker.sol:1745:47: Error: Use double quotes for string literals
PoolTracker.sol:2850:3: Error: Function name must be in mixedCase
PoolTracker.sol:2913:3: Error: Function name must be in mixedCase
PoolTracker.sol:2919:3: Error: Function name must be in mixedCase
PoolTracker.sol:2925:3: Error: Function name must be in mixedCase
PoolTracker.sol:2931:3: Error: Function name must be in mixedCase
PoolTracker.sol:2937:3: Error: Function name must be in mixedCase
PoolTracker.sol:3059:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3061:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3062:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3064:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3066:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3067:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3068:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3069:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3070:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3071:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3072:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3121:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PoolTracker.sol:3444:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
PoolTracker.sol:3463:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
PoolTracker.sol:3482:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
PoolTracker.sol:3594:5: Error: Explicitly mark visibility in function

(Set ignoreConstructors to true if using solidity >=0.7.0)
PoolTracker.sol:3628:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3629:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3638:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3639:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3640:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3641:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3643:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3644:5: Error: Explicitly mark visibility of state
PoolTracker.sol:3706:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
PoolTracker.sol:3730:39: Error: Visibility modifier must be first in
list of modifiers
PoolTracker.sol:3749:122: Error: Avoid to make time-based decisions
in your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

