@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: IronVest Token
Platform: Ferrum Network
Language: Solidity

Date: November 8th, 2022

Table of contents

Introduction

... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 17
(@ 0] 1Y/ =1 1 T To [o] 0T) 18
DISCIAIMEIS ... e 20
Appendix

o Code FIoW Diagramououoiiii s 21
o Shther RESUIS LOGuiiiiii e 22
e Solidity staticanalysis ... 25
® SOININt LiNtEr oo 29

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the IronVest Token team to perform the Security audit of
the lronVest Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on November 8th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

IronVest Token Contract is smart contract, having functions like claim, claimable, initialize,
addCliffVesting, addVesting, emergencyWithdraw, etc. The IronVest Token contract
inherits IERC20Upgradeable, AccessControlUpgradeable, SafeERC20Upgradeable,
Initializable, ReentrancyGuardUpgradeable standard smart contracts from the
OpenZeppelin library. These OpenZeppelin contracts are considered community audited

and time tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
IronVest Token Smart Contract

Platform Ferrum Network / Solidity

File IronVest.sol

File MD5 Hash C5C39D2245B77CE0786F31649DD34016

Online code link https://qithub.com/ferrumnet/linear-release-engine/blob/
main/contracts/IronVest.sol

Audit Date November 8th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://github.com/ferrumnet/linear-release-engine/blob/main/contracts/IronVest.sol
https://github.com/ferrumnet/linear-release-engine/blob/main/contracts/IronVest.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Other Specifications YES, This is valid.
e Open Zeppelin standard code is used.
e \ester owners can create a new vesting with
a cliff.
e Owner can withdraw emergency tokens that
are sent to the contract mistakenly.

e Admin can set signer addresses.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer’'s solidity based smart contracts
are “Secured”. This token contract does contain owner control, which does not make it
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. Smart contract contains Libraries, Smart contracts,

inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the IronVest Token are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the IronVest Token.

The IronVest Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contracts. Ethereum’s NatSpec

commenting style is used, which is a good thing.

Documentation

We were given an lronVest Token smart contract code in the form of a github weblink. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented on. So it is easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are not used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | initializer modifier Passed No Issue
3 | reinitializer modifier Passed No Issue
4 | onlylnitializing modifier Passed No Issue
5 disablelnitializers internal Passed No Issue
6 | __ ReentrancyGuard_init internal access only No Issue
Initializing
7 | __ReentrancyGuard_init_unchai | internal access only No Issue
ned Initializing
8 [nonReentrant modifier Passed No Issue
9 nonReentrantBefore write Passed No Issue
10 | nonReentrantAfter write Passed No Issue
11 | reentrancyGuardEntered internal Passed No Issue
12 | _ AccessControl_init internal access only No Issue
Initializing
13 | _ AccessControl_init_unchained | internal access only No Issue
Initializing
14 | onlyRole modifier Passed No Issue
15 | supportsinterface read Passed No Issue
16 | hasRole read Passed No Issue
17 | checkRole internal Passed No Issue
18 | checkRole internal Passed No Issue
19 | getRoleAdmin read Passed No Issue
20 [grantRole write access only Role No Issue
21 | revokeRole write access only Role No Issue
22 | renounceRole write Passed No Issue
23 | setupRole internal Passed No Issue
24 | setRoleAdmin internal Passed No Issue
25 | grantRole internal Passed No Issue
26 | revokeRole internal Passed No Issue
27 | onlyVester modifier Passed No Issue
28 | onlyOwner modifier Passed No Issue
29 | initialize internal access only No Issue
Initializing
30 | addVesting external
31 [claim external Passed No Issue
32 | addCliffVesting external
33 | claimCliff external Passed No Issue
34 | claimNonCliff external Passed No Issue
35 | emergencyWithdraw external | access only Owner No Issue
36 [setSigner external [access only Owner No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

37 | poollnformation external Passed No Issue
38 | claimable read Compile time Refer Audit
warnings Findings
39 | cliffClaimable read Compile time Refer Audit
warnings Findings
40 | nonCliffClaimable read Compile time Refer Audit
warnings Findings
41 | signatureVerification read Passed No Issue
42 | splitSignature internal Passed No Issue
43 | verifyMessage internal Passed No Issue
44 | messageHash internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity
No critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low
(1) Infinite loops possibility:

addVesting()

/4/ Bnotice Create a new hesting.
function addvesting(
string memory _poolName,
uint2se _vestingEndTime,
address _tokenaddress,

address[] memory _usersaddresses,
uint2s58[] memory _useralloc,
bytes memory _signature,

bytes memory _keyHash
) ext onlyvester nenReentrant {

_usersAddresses.length == _useralloc.length,
"IIrgnvest array @ Length of _usersaddresses and _useralloc Must Be Equal”

require(
_westingendTime > block.timestamp,
"IIrgnvest : vesting End Time Should Be Greater Than Current Time"
3
require(
signatureverification(
_signature,
_poolName,
_tokenaddress,
_keyHash
1} == signer,
"signer : Invalid signer”
¥;
uint256 totalvesting:
| for (uint25e 1 = 2; 1 <« _usersAddresses.length; i++) { I

totalvesting += _useralloc[i];
userInfo[vestingPoolsSize][_usersAddresses[i]] = UserInfo(

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

addCliffVesting()

T ————

IH
require(

_cliffPercentagel@Beg <= 5088,

"Percentage : Percentage Should Be less Than S@%"
IH

uint256 totalvesting;
| for (uint256 1 = @; 1 < _usersAddresses.length; i++) { |

uint256 cliffAlloc = (_userdAlloc[i] * _cliffPercentagel@edd) /
10680;

totalVesting += _userdlloc[i];

uint256 nonCliffReaminingTobeclaimable = _user&lloc[i] - cliffalloc;

userCliffInfo[vestingPoolSize][_usersAddresses[i]] = UserCliffInfol
_userAlloc[i],
cliffalloc,

8.l

_cliffPericdEndTime,

As array elements will increase, then it will cost more and more gas. And eventually, it will
stop all the functionality. After several hundreds of transactions, all those functions
depending on it will stop. We suggest avoiding loops. For example, use mapping to store
the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.
e addVesting() - _usersAddresses.length

e addCliffVesting() - _usersAddresses.length

Very Low / Informational / Best practices:

(1) Unlocked Compiler Version:

The contract uses the "A" prefix specifier, Use the Unlocked compiler version. Unlocked
compiler version code of the smart contract, and that gives permission to the users to

compile it one higher than a particular version.

Resolution: We suggest using that the compiler version is unlocked instead of the locked
compiler version. The following line of code can be added to the project:

e pragma solidity 0.8.17;

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Compile time warnings:

615 function nonCliffClaimd
Warning: This declaration shadows an existing declaration. 616 public
--> IronvVest.sol:620:9: -
617 view
| 618 returns (uint256)
620 | uint256 nonCliffClaimable; 619 {
| AAAANNANNAANNAANNANNNNAANNN m 629 MMI
Note: The shadowed declaration is here: / 621 UserNonCliffInfo me
--> TronVest.sol:615:5: 622 require(
| 623 info.allocatior]
615 | function noncliffclaimable(uint256 poolld, address 624 "Allocation
_user) 625)s
| ~ (Relevant source part starts here and spans across multiple))
. ¥ O 0 listen on all transactions
lines).
>
So> 777 GreCUnT recornIne o
Warning: This declaration shadows an existing declaration. 586 function cliffClaimable(
--> IronVest.sol:591:9: 587 public
| 588 view
591 | uint2s6 cliffclaimable; >89 returns (uint256)
| AAAAANAAAAAAAAAANNAANN 599 {
591 int256 cliffClaimab
Note: The shadowed declaration is here: /' @ W\?w
5 Ironvest.sol:586:5: 592 UserCliffInfo memory
| T 593 require(
594 info.allocation
586 | function cliffclaimable(uint256 poolId, address _user) 595 "Allocation : Yo
| ~ (Relevant source part starts here and spans across multiple 596);
3
lines).
¥ 0 o listen on all transactions QI
.)) o) 559 /// @param _user : User e|
warning: This declaration shadows an existing declaration. 560 /// @return returning the
o Lartesttoaallieazie 561 function claimable(uint25
| 562 i
public
566 | uint256 claimable; 563 view
| nansnansnnsannann 564 returns (uint256)
Note: The shadowed declaration is here: 565 {
--> IronVest.sol:561:5: —» [1] 566 uint256 claimable;
\ 567 UserInfo memory info
561 | function claimable(uint256 poolld, address _user) 568 require(
| ~ (Relevant source part starts here and spans across multiple 569 info.allocation >
lines). 570 "Allocation : You
¥ © 0 listen on all transactions Q

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

522 uin

warning: This declaration shadows an existing declaration. 523)
--> Ironvest.so0l:525:9: 524 {
| (0 525 bool isCliff = clif
525 | bool isCliff = cliff[poolTd]; 526 (isCliff) {
527 CliffPoolInfo m

‘ AAAAAAAAAAAA

Note: The shadowed declaration is here: >28 Petutn (,
. 529 isCliff,

--» Ironvest.sol:513:13:
| 530 info.poclNa

o 531 info.startTi
513 | bool iscliff, . .

532 info.vestin
‘ AANAANARANAN
¥ O o0 listen on all transactions

Warning: This declaration shadows an existing declaration.
1)IronVest.sol:525:9: | 525 | bool isCliff = cliff[_poolld];

IronVest.sol:513:13: | 513 | bool isCliff, |
2.)IronVest.sol:566:9: | 566 | uint256 claimable; |

IronVest.sol:561:5: | 561 | function claimable(uint256 _poolld, address _user) |
3)IronVest.sol:591:9: | 591 | uint256 cliffClaimable;

IronVest.sol:586:5: | 586 | function cliffClaimable(uint256 _poolld, address _user) |
4)lronVest.sol:620:9: | 620 | uint256 nonCliffClaimable; |

IronVest.sol:615:5: | 615 | function nonCliffClaimable(uint256 _poolld, address _user) |

Resolution: We suggest if a variable is declared in the function then no need to declare it

again in the same function. so we need to remove unwanted declarations.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e addVesting: Vester can create a new vesting.

e addCliffVesting: Vester can create a new vesting with a cliff.

e emergencyWithdraw: Owner can use it to withdraw tokens that are sent to the
contract mistakenly.

e setSigner: Owner can set a signer address.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of a github weblink. And we have used all
possible tests based on given objects as files. We have observed 1 low severity issue and
some Informational issues in the smart contract. But those are not critical ones. So the

smart contract is ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - IronVest Token

@ IronVest
Initializable

ReentrancyGuardUpgradeable
AccessControljpgradeable

nSafeER G20Upgradeable for [ER C20Upgradeable

bytes32 VESTER_ROLE
string vestingCortracthiame
uint256 vestingPoolSize
address signer
uint256==hool cliff

uint256=>mapping address=>Userinfo userinfo

@ JERC20Upg o

© QtotalSupply()
® QpalanceOf()
@ transfer()
@ Qallowance()
© approve()

@ IERC20PermitUpgradeable

@ permit()
® Qnonces()
© QDOMAIN_SEPARATOR()

@ transferFrom()

,for IERC20Upgradeable

’

AY
A/

@ SafeERC20Upgradeable

@ StringsUpg e

O bytes18 _HEX_SYMBOLS

O uintS _ADDRESS_LENGTH

for address

< safeTransfer()
< safeTransferFram()
©)

< QtoString()
© QtoHexString()

© safelncreaseAllowance()
< safeDecreaseAllowance()
< safePermit()

B _calOptionalReturn()
T

:fo! address
I
|
I
I
|
I
|

v/

(®) Addressporadeabie

< QsContract()
< sendValue()

< functionCall()

< functionCallvvith\/alue()

< QfunctionStaticCall()

© QuerifyCallResuttFromTarget()
& QuerifyCallResutt()

B Q_revert()

-

uint pping address=>UserCliffinfo userCliffinfo

uint256==mapping address=>UserMonCliffinfo usertlonCliffinfo
bytes32==bool usedHashes

© uint256=>Poolinfo _poolinfo

© uint256=>CliffPoclinfo _cliffPaclinfa

000000000

intialize()
addVesting()
claim()
addCliffvesting()
claimCIiff()
claimMonCliff()
emergencyWithdraw()
setSigner()
@ Qpoolinformation()
@ Qclaimable()
@ QliffClaimable()
@ QnenCliffClaimable()
© Qsignature'/erification()
< Q_spltSignature()
© Q_verifyMessage()
< O_messageHash()

T

eeoco00@®

@ ReentrancyGuardUpgradeable

| Initializable

O uint256 _NOT_ENTERED
O uint256 _ENTERED

|| O unt256 _status

O uint256 __gap

< __ReentrancyGuard_nit()
© _ ReentrancyGuard_int_unchained()
|| ® _nonReentrantBefore()
B _nonReertrantAfter()
|| © & _reentrancyGuardEntered()
T
|

©AccesanntmlUpgradeahle

Initializable
Contextipgradeable
lAccessControlUpgradeable
ERC165Upgradeabie

O bytes32==RoleData _roles
© bytes32 DEFAULT_ADMIN_ROLE

O uint256 __gap

< __AccessControl_int()

< __AccessControl_nit_unchained()
@ Qsupportsirterface()

@ QhasRole()

© Q_checkRole()

© QgetRoleAdmin()

@ grantRole()

@ revokeRole()

@ renounceRole()

< _setupRole()

< _setRole Admin()

< _grantRole()

< _revokeRale() L

(©) contextupgradeanie

@ lAccessControlUpgradeable.

(©) ercis5Upgradzate

Initializable

| @ QhasRole()

\ ® QgetRoleAdmin{)
@ grantRale()

@ revokeRole()

© renounceRole()

O uint256 __gap

& __Context_init()
© __Context_int_unchained()
© Q_msgSender()

© Q_msgData()

Initializable
IERC165Upgradeable

O uint256 _ gap

© __FRC1B5_init()
< __ERC165_int_unchained()
© Qsupportsinterface()

© Initializable

O uirt8 _inttialized
O kool _intializing

< _disablelnitializers()

@ |ERC185Upgradeable

© Qsupportsinterface()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither Log >> IronVest.sol

:Detectors:
Vest.claimable{uint256 ess).claimable (Iro
- IronVest.claimable(ress) IIr
Jest.cliffClaimable{uint s
- IronVest.cliffClaimable(
lest.nonCliffClaimable({uint2
- IronVest.nonCliffClaima
rence: https://github.com/c
:Detectors:
Vest.initialize(string,add
- signer i (2)
Reference: https hub . com/crytic slither/ /wik i/Detector-Documentat ion#miss ing-zero-address-validation
INFO:Detectors:
Reentran in 6 6 , , ';,-'t-:s_.l:;,-'
t.sol#

ess(this),totalVesting) (IronVest.sol#1115-11189)
R-:fer-:r-:»::-l'tt|:s gith L Jcrytic/ er/w eentrancy-vulnerabilities-2
INFO:Detectors:
i ddcliffvesting(string,uint256,uint256,uint256,address,uint256,address[],uint256[],bytes
s).safeTransferFrom{_msgSender(),address{this),totalVesting) (IronVest.sol#1115-1119)
EndTime,nonCliffVestingPeriod,_
strin -._.L'Ll‘t 256, 255, -ss[] uint2 l=f[:|
s}.sef»:_rarsf»:|':|'-:r'lﬁ_r's-;E»:r-:el'[).,address(this),totalVesting) (IronVe
,_poolName,block.timestamp,_ vestingEndTime, tokenAddress,totalvesting, usersAd
»?é.t.clalr’[Li\t,EE I_I' Vest.sol#1883-16018):

External calls:
- IERC20Upgradeable(_poolInfo[_poolId].tokenAddress).safeTransfer(_msgSender(),transferAble) (Iro

Event emitted after the call(s):

- Claim(d, o s (),remaini oBeClaimable) (IronVest.sol#1017

y in I est.claimCliff(uint2 ’56) (Ir st.sol#1143-1168)

Externa alls:

- IERC28Upgradeable(_cliffPoolInfo[_poolId].tokenAddress).safeTransfer(_msgSender(),transferAble) {IronVest.sol#1152-11

(IronVest.sol#1162-1167)

Externa
- IERC_IL|::|.=-».=|1»I cliffPoolInfo[_poolId].tokenAddress).safeTransfer(_msgSender(),transferAble) (IronVest.sol#1185-11

t emitted after =)
ncliffclaim{ _ s nsferable, g Claimable) { Vest.sol#1193-1198)
: https github.com/crytic/slithe on#reentrar vulnerabilities-3
:Detectors:
Jfest.addVesting{string,uint256,address,address[],uint256[],bytes ,bytes) (IronVest.sol#933-997) uses timestamp for compariso
vestingEndTime = block.timestamp,IIronVe : Vesting End Time Should Be Greater Than Current Ti
Vest.sol#1003-1018) uses timestamp for comparisons
ferdble = 8,IIronVest : Invalid Transfe
,uint256,uint256,uint256, ess,uint256, = es) {IronVest.sol#1032-113
ons
cliffPeriodEndTime = block.timestamp,IIronVest : CLiff Vesting Time Must Be Lesser Than Vesting
est.sol#1143-1168) uses timestamp for comparisons
cliffPoolInfol d].cliffPeriodEndTime < block.timestamp,IIronVest : iff Period Is

rAble = 0,II t : Invalid Transferab (=st.sol#1151)
{IronVest.sol#1175-1199) uses timestamp fo mparisons

(Ironvest.sol#1175-1199) uses timestamp fc comparisons
cliffPoolInfo[_poolId].cliffPeriodEndTime < block.timestamp,IIronVes

transferAb = 0, [Invalid TransferaAb (IronVest.sol#1184)
2]) (Iro -1 2) uses timestamp for mparisons

info.allocation = 8,Allocation : You Don't have allocation in this p

lock . timestamp onVest.sol#1298)
est.sol#1312-13 uses timestamp for comparisons

.Allocation : You Don't have allocation in this pc) o est.sol#1319-13

) uses tim stsrp T mpar isons

l.string){ info.allocation = 0,Allecation : You Don't have allocation in this pool) (IronVest.sol#1343-1351

a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

INFO:Detectors:
AccessControlUpgradeable. AccessControl_init_unchained{) (IronVest.sol# 7)o ver used and should be remo
AccessControlUpgradeable._setRoleAdmin{bytes32,bytes32) (Ironvest.sol# never used and should be remove
Hjj|asstg|aj9abla functionCall{address,bytes) (IronVest.sol#40-42) is never “used ahd should be removed
deable.functionCallwithvalue({address,bytes,uint256) {IronVest.sol#52-58) is never used and should be removed
dressUpgradeable. functionStaticCall{address,bytes) (IronVest.sol#71-73) is never used and should be removed
AddressUpgradeable. functionStaticCall{address,bytes,string) (IronVest.sol#75-82) is never used and should be removed
AddressUpgradeable.sendValue({address,uint256) (IronVest.sol#33-38) is n - used and should be removed
AddressUpgradeable.verifyCallResult(bool,bytes,string) (IronVest.sol#1686-118) is never used and should be removed
ContextUpgradeable._ Context_init() (IronVest.sol#427-428) is n used and should be remo
ContextUpgradeable._ Context_init_unchained{) {IronVest.sol#438-431) is never used and should be removed
ContextUpgradeable._msgData() (IronVest.sol#436-438) is never used and should be removed
ERC165Upgradeable. ERC165_1init{) (IronVest.sol#512-513) is never used and should be removed
ERC165Upgradeable. ERC165_1init_unchained() (IronVest.sol#515-516) is never used and should be removed
Initializable. disableInitializers() (IronVest.sol#417-423) is n r used and should be removed
Reentr MCuGUalepgradnabln reentrancyGuardEntered({) (IronVest.sol#499-581) 1is never used and should be ved
f Upgradeable.safeApprove(IERC208Upgradeable,address,uint256) (IronVest.sol#159-169) is never used and should be removed
Upgradeable.safeDecreaseAllow CQ‘IERCA“LPg|dedb19 address,uint256) (IronVest.sol#188-191) is never used and should b

Upgradeable.safeIncreaseAllowance({ IERC20Upgradeable,address,uint256) (IronVest.sol#171-178) 1is never used and should b

Upgradeable.safePermit(IERC ermitUpgradeable,address,address,uint256,uint256 ,uintd,bytes32 ,bytes32) (IronVest.sol#19
7) is never used and should be removed
StringsUpgradeable.toHexString(uint256) (IronVest.sol#250-261) i rer used and should be remo
StringsUpgradeable. toString{uint2 ronVest.sol#225 i ver used and should be remoy
Reference: https://github. CDWIC|utlcfsllth9|f\lklfDntnctor Documentation#dead-code
INFO:Detectors:
Pragma version8.8.4 {IronVest.sol#3) necessitates a version too recent to be trusted. Consider deploying with @
solc-8.8.4 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in AddressUpgradeable.sendvalue(address,uint256) (IronVest.sol#33-
{success) = recipient.call{value: amount}{) (IronVest.sol#36)
Low level call in Addresstgradeable.functiontallwith“'IUAIajjlass bthS uint2 ,string} (IronVest.sol#60
{success, returndata) = target.call{value: value}(data) \I|Dn495t sol#67)
Low level call in AddressUpgradeable.functionStaticCall{address,bytes,string) (IronVest.sol#75-
- {success,returndata) = target.staticcall(data) [IIDh«eSt 501?6“}

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls

INFO:Detectors:

Function IERC2GPermitUpgradeable.DOMAIN_SEPARATOR() {IrenVest.sol#137) is not in mixedCase

Function ContextUpgradeable._ Context_init({) (IronVest.sol#427-428) is not in mixedCase

Function ContextUpgradeable._ Context_init_unchained{) {IronVest. sol#430-431) is not in mixedCase

Variable ContextUpgradeable._ gap (IronVest.sol#448) is not in mixedCase

Function ReentrancyGuardUpgradeable._ ReentrancyGuard_init() (IronVest.sol# 462) is not in mixedCase

Function ReentrancyGuardUpgradeable._ ReentrancyGuard_init_unchained() {IronVest.sol#464-466) is not in mixedCase

Variable ReentrancyGuardUpgradeable._ gap (IronVest.sol#588) is not in mixedCase

Function ERC165Upgradeable._ ERC165_1init{) (IrenVest.sol#512-513) is not in mixedCase

Function Upgradeable._ ERC165_init_unchained({] (IronVest.sol#515-516) is not in mixedCase

Variable ERC165Upgradeable._ gap (IronVest.sol#529) is not in mixedCase

Function AccessControlUpgradeable._ AccessControl_init() (IronVest.sol#533-534) is not in mixedCase

Function AccessControlUpgradeable._ AccessControl_init_unchained{) (IronVest.sol#536-537) is not in mixedCase

Variable AccessControlUpgradeable. gap (IronVest.sol#741) is not in mixedCase

Parameter Ironvest.initialize[string,address). AstlngNawa (IronVest.sol#912) is not in mixedCase

Parameter IronVest.initialize(string,address)._signer (IronVest.sol#912) is not in mixedCase

Pa;aneter IronVest.addvesting({string,uint256,address,address[],uint256[],bytes, bytes)._poolName (IronVest.sol#934) is not in mi

xedCase

Parameter IronVest.addvesting(string,uint256,address,address[],uint256[],bytes,bytes)._vestingEndTime (IronVest.sol#935) is not
in mixedCase

Parameter IronVest.addVesting(string,uint256,address,address[],uint256[],bytes, ,bytes). tokenAddress {IronVest.sol#936) is not i

n mixedCase

Parameter IronVest.addVesting(string,uint256,address,address[],uint256[],.bytes, bytes)._usersAddresses (IronVest.sol#937) is not
in mixedCase

Parameter IronVest.addVesting({string,uint256,address,address[],uint256[],bytes,bytes). userAlloc (IronVest.sol#938) is not in m
ixedCase

Parameter IronVest.addVesting(string,uint256,address,address[],uint256[],bytes,bytes)._signature (IronVest.sol#939) is not in m
ixedCase

Parameter IronVest.addVesting({string,uint256,address,address[],uint256[],bytes,bytes)._keyHash ({Ironvest.sol#9408) is not in mix

edCase

Parameter I|Dn;ast.claiwfuint‘EC;._poolld {IronVest.sol#1082) is not in mixedCase

Parameter .ajj(llTTbastlnglst|1ng uint256,uint256,uint256,address ,uint256,address[],uint256[],bytes,bytes)._poolName (I
ronVest.sol#) is not in mixedCase

Parameter IronVest.addCliffvesting(string,uint256,uint256,uint256,address,uint256,address[],uint256[],bytes,bytes)._vestingEndT
ime {IronVest.sol#1834) is not in mixedCase

Parameter IronVest.addCliffVesting(string,uint256,uint256,ulnt256,address,uint256,address[],uint256[],bytes bytes). clif stin
gEndTime (IronVest.sol#) is not 1in mixedCase
Parameter IronVest.addcCl Vesting(string, uint256,uint256,uint256,address,uint256,address[],uint256[],bytes ,bytes). cliffPeriod
EndTime (IronVest.sol#1836) is not in mixedcase
Parameter IronVest jj(llff»ést1hglst|1hg uint256,uint256,uint256,address,uint256,address[],uint256[],bytes ,bytes). tokenAddres
s (IronVest.sol#10 is not in mixedCase
Parameter IronVest.addcl uéstlnglst|1hg uint256,uint256,uint256,address,uint256,address[],uint256[],bytes ,bytes)._cliffPercen
o (3 8) is not in mixedcase
o vesting(string, uint256,uint256 ,uint256,address,uint256,address[],uint256[],bytes ,bytes)._usersAddres
ses (IronVest.sol#10839) is not in mixedCase
Parameter Ir .addCliffvesting(string,uint256,uint256,uint256,address,uint256,address[],uint256[],bytes ,bytes)._useraAlloc (
: is not in mixedCase
Parameter Ir e .aijllTT\QStlhg'Stllhg uint256,uint256,uint256,address,uint256,address[],uint256[].bytes ,bytes)._signature {
IronVest.sol#l is not in mixedCase
Parameter I est.addCliffvesting(string,uint256,uint256,uint256,address,uint256,address[],uint256[],bytes ,bytes)._keyHash (Ir
not in mixedCase
.claimCliff{uint25 _peoolId {(IrenVest.sol#1143) is not in mixedCase
.claimNonCliff{uint256) oolId (IronVest.sol#1175) is not in mixedCase
.emergencyWithdr 28Upgradeable,uint token (IronVest.sol#12 4) 1s not in mixedCase
.emergenc ywW 2 Lpgl deable,uint ._amount (IronVest.sol#1)} 1s not in mixedCase
.setSigner(addr 5 IIIDHJQSt sol#l;l;- is not in mixedCase
Parameter .poolInformation{uint2 .7p0011d (Ironvest.sol#12 is not 1in mixedCase
Parameter f .claimable({uint2 ss). poolId (Ironvest.sol#) is not in mixedCase
.claimable{uint256,address). user {(IronVest.sol#1287) is not in mixedCase
est.cliffclaimable{uint256,address)._poolTd {Tronvest. sol#1312) is not in mixedCase
Parameter .cliffclaimable(uint2 address)._user (IronVest.sol#1312) is not in mixedCase
Parameter f .nonCliffclaimable{uin ,address)._poolId (IronvVest.sol#1341) is not in mixedCase
.nonCliffclaimable{uin ,address). user {(IronVest.sol#1341) is not in mixedCase
est.signatureverification(bytes,string,address,bytes)._signature (Ironvest.sol#1) is not in mixedCase
Parameter .signatureverification({bytes,string,address,bytes). poolName (IronVest.sol#1372) is not in mixedCase
Parameter Ve .signatureverification(bytes,string.address,bytes)._tokenAddress (IronVest.sol#1373) 1is not in mixedCase
.signatureVerification{bytes, string,address, bytes). keyHash (IronVest.sol#1374) is not in mixedCase
able IronVest._ poolInfo (IronVest.sol#329) 1is not in nlxnjCas=
Variable IronVest. cliffPoolInfo {IronVest.sol#2831) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

ate and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

IronVest.sol
Security

Inline assembly:

The Contract uses inline assembly, this is only advised in rare cases. Additionally
static analysis modules do not parse inline Assembly, this can lead to wrong
analysis results.

more

Pos: 6/6:8:

Block timestamp:

Use of "block.timestamp”: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 221:30:

Block timestamp:

Use of "block.timestamp™: "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose” the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 628:58:

Block timestamp:

Use of "block.timestamp": "block.timestamp” can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 630:21:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas & Economy

Gas costs:

Gas requirement of function IronVest.vestingContractName is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 85:4:

Gas costs:

Gas requirement of function IronVest.addVesting is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas

of storage (this includes clearing or copying arrays in storage)
Pos: 207:4:

Gas costs:

Gas requirement of function IronVest.claim is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid
loops in your functions or actions that modify large areas of storage (this
includes clearing or copying arrays in storage)

Pos: 277:4:

(Gas costs:

Gas requirement of function IronVest.addCliffVesting is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 306:4:

Gas costs:

Gas requirement of function IronVest.signatureVerification is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid Loops in your functions or actions that modify large areas
of storage (this includes clearing or copying arrays in storage)

Pos: 644:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of iterations
in a loop can grow beyond the block gas limit which can cause the complete
contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 234:8:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of iterations
in a loop can grow beyond the block gas limit which can cause the complete
contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 348:8:

Miscellaneous

Constant/View/Pure functions:

IronVest.emergencyWithdraw (contract IERC20Upgradeable,uint256) :
Potentially should be constant/view/pure but is not. Note: Modifiers are currently
not considered by this static analysis.

more

Pos: 4/8:4:

Constant/View/Pure functions:

IronVest._splitSignature(bytes) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 665:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names:

IronVest._verifyMessage(bytes32,uint8,bytes32,bytes32) : Variables have very
similar names "_v" and "_r". Note: Modifiers are currently not considered by this

static analysis.
Pos: 711:64:

Similar variable names:

IronVest._verifyMessage(bytes32,uint8,bytes32,bytes32) : Variables have very
similar names "_v" and "_r". Note: Modifiers are currently not considered by this

static analysis.
Pos: 711:68:

Similar variable names:

IronVest._verifyMessage(bytes32,uint8,bytes32 bytes32) : Variables have very
similar names "_r" and "_s". Note: Modifiers are currently not considered by this
static analysis.

Pos: 711:72:

No return:

IronVest. _splitSignature(bytes): Defines a return type but never explicitly returns

a value.
Pos: 665:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance

(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.

invalid input or a failing external component.

more
Pos: 674:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100
= 0 instead of 0.1 since the result is an integer again. This does not hold for
division of (only) literal values since those yield rational constants.

Pos: 241:16:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

IronVest.sol

IronVest.sol:3:1: Error: version
r semver requirement

IronVest.sol:221:31:

Compiler 0.8.17 does not satisfy the

Error: Avolid to make time-based decisions in

your business logic
IronVest.so0l:240:17:
your business logic
IronVest.sol:241:52:
your business logic
IronVest.sol:246:13:
your business logic
IronVest.sol:262:13:
your business logic
IronVest.so0l:289:31:
your business logic
IronVest.sol:331:35:
your business logic
IronVest.so0l:378:13:
your business logic
IronVest.so0l:420:58:
your business logic
IronVest.sol:434:36:
your business logic
IronVest.sol:452:58:
your business logic
IronVest.sol:466:39:
your business logic
IronVest.sol:572:50:
your business logic
IronVest.so0l:576:18:
your business logic
IronVest.so0l:598:59:
your business logic
IronVest.sol:600:64:
your business logic
IronVest.sol:603:22:
your business logic
IronVest.sol:627:59:
your business logic
IronVest.so0l:628:59:
your business logic
IronVest.so0l:630:22:
your business logic
IronVest.so0l:676:9:

Error:

Frror:

Frror:

Error:

Error:

Error:

Error:

Error:

EFrror:

Error:

Error:

Error:

Error:

Error:

Frror:

Error:

Error:

Error:

Error:

Error:

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid

Avoid using inline assembly.

acceptable only in rare cases

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

make

make

make

make

make

make

make

make

make

make

make

make

make

make

make

make

make

make

make

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

time-based

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

decisions

It is

is a private and confidential document. No part of this document should

be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

