
Project: Frontline DAO Protocol
Platform: Polygon Network
Language: Solidity
Date: August 15th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....………………………………………………………………….11

Technical Quick Stats …..……………………………………………………………………… 12

Code Quality ……………………………………………………………………………………. 13

Documentation ………………………………………………………………………………….. 13

Use of Dependencies …………………………………………………………………………… 13

AS-IS overview ………………………………………………………………………………….. 14

Severity Definitions ……………………………………………………………………………... 25

Audit Findings …………………………………………………………………………………… 26

Conclusion ………………………………………………………………………………………. 30

Our Methodology ………………………………………………………………………………... 31

Disclaimers ………………………………………………………………………………………. 33

Appendix

● Code Flow Diagram ……………………………………………………………………... 34

● Slither Results Log ………………………………………………………………………. 58

● Solidity static analysis ….……………………………………………………………….. 67

● Solhint Linter …………………………………………………………………….……….. 92

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Frontline DAO to perform the Security audit of the
Frontline DAO Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on August 15th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Frontline DAO Protocol is a Defi Program which has functions like mint, swap,

OpenTrade, burn, twap, spot, update, mock, info, transfer, set pool, claimable, zap,

addLiquidity, cleanDust, etc.

● The Frontline DAO contract inherits the ERC20, SafeERC20, Ownable,

ReentrancyGuard, Address, IUniswapV2Router02, IERC20, IERC721, Math,

SafeMath, IUniswapV2Pair, Context, Initializable, TransparentUpgradeableProxy,

ERC20Burnable standard smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Frontline DAO Protocol Smart Contracts

Platform Polygon / Solidity

File 1 Pool.sol

File 1 MD5 Hash 856107FFBD51DDC1399BEC38192D0CEB

File 2 SwapStrategyPOL.sol

File 2 MD5 Hash 9CAEB2CD15D2E1C2CECA52DDC4C5FE47

File 3 Timelock.sol

File 3 MD5 Hash 94F559046B7CB4335EE0F49341A23DA0

File 4 DaoChef.sol

File 4 MD5 Hash E12C4E0BDCB405DD0DB61CCF7173ED06

File 5 DaoStaking.sol

File 5 MD5 Hash 9358FC7E65F92434207DD9F06F01F960

File 6 DaoZapMMSwap.sol

File 6 MD5 Hash 46D304749327ADF042F8962D64CF8EFC

File 7 NFTController.sol

File 7 MD5 Hash 7B517FFAE5E28C8D3B7020747FFA8659

File 8 NFTControllerProxy.sol

File 8 MD5 Hash E2E8A433C71CE32907140DCF3F28480D

File 9 Fund.sol

File 9 MD5 Hash 47370A0301A3BBA40747C7FFD8A18E6B

File 10 DaoFund.sol

File 10 MD5 Hash 0DCB7E30D2EE3CBDE722E8D63D87ACF1

File 11 DevFund.sol

File 11 MD5 Hash A0AC2988CBE65230B36071AA974D05AB

File 12 Reserve.sol

File 12 MD5 Hash 164785B5E9F9181CE4C30A503FC3B0D4

File 13 TreasuryFund.sol

File 13 MD5 Hash EF21D2BFAFF8EB4877E0B95A99F4B8ED

File 14 MasterOracle.sol

File 14 MD5 Hash 26FFB8A6EB84AABF384A830DB4572C0A

File 15 UniswapPairOracle.sol

File 15 MD5 Hash 37801A23DE6F4571ADD278A4A062C1D5

File 16 XToken.sol

File 16 MD5 Hash 83382FC411F2E4462B30C55D6F62A2DD

File 17 YToken.sol

File 17 MD5 Hash FFA9BDAB9AEE9D07DB46CB3A23A34696

File 18 LOVE.sol

File 18 MD5 Hash 8989CC5C1C75E964DB25F3065208D040

File 19 MMFX.sol

File 19 MD5 Hash 664C0017F4BF8498B957DB667ED68580

File 20 MMOX.sol

File 20 MD5 Hash 7B2F2773EA26033423E33F9A1D18FA02

File 21 DaoTreasury.sol

File 21 MD5 Hash B4AEF5736647E39B4AEC058D7AF7A989

File 22 MMUSD.sol

File 22 MD5 Hash 9CE7E628B8A5C3D365CF307F3C64AD15

File 23 StratRecollateralize.sol

File 23 MD5 Hash 8825619BF2C90BD2337916B8B6CB90B2

File 24 StratReduceReserveLP.sol

File 24 MD5 Hash EE1CAC2A02D76BCD4158A836C13CE2DB

Audit Date August 15th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Pool.sol
● Refresh Cooldown: 1 hour

● Ratio StepUp: 0.2%

● Ratio StepDown: 0.2%

● Price Target: 1 MMF

● Price Band: 0.004

● Minimum Collateral Ratio: 9,50,000

● YToken Slippage: 20%

● Redemption Fee: 0.5%

● Redemption Fee Maximum: 0.9%

● Minting Fee: 0.3%

● Minting Fee Maximum: 0.5%

YES, This is valid.

File 2 SwapStrategyPOL.sol
● Swap Slippage: 20%

YES, This is valid.

File 3 Timelock.sol
● Grace Period: 14 Days

● Minimum Delay: 12 Hours

● Maximum Delay: 30 Days

YES, This is valid.

File 4 DaoChef.sol
● Maximum reward: 10 Tokens Per Second

● NFT Boost Rate: 100

YES, This is valid.

File 5 DaoStaking.sol
● Rewards Duration: 1 week

● Lock Duration: 4 weeks

● Team Reward Percent: 20%

YES, This is valid.

File 6 DaoZapMMSwap.sol
DaoZap is a ZapperFi's simplified version of zapper

YES, This is valid.

contract which will:

1. use ETH to swap to target token

2. make LP between ETH and target token

3. add into DaoChef farm

File 7 Fund.sol
● Fund has functions like: allocation, transfer, etc.

YES, This is valid.

File 8 DaoFund.sol
● Allocation: 10%

● Vesting Duration: 3 Years

YES, This is valid.

File 9 DevFund.sol
● Allocation: 10%

● Vesting Duration: 2 Years

YES, This is valid.

File 10 Reserve.sol
● Reserve has functions like: initialize, etc.

YES, This is valid.

File 11 TreasuryFund.sol
● Allocation: 10%

● Vesting Duration: 3 Years

YES, This is valid.

File 12 MasterOracle.sol
● MasterOracle has functions like getYTokenTWAP, etc.

YES, This is valid.

File 13 UniswapPairOracle.sol
● Period: 60-minute Twap (Time-weighted Average

Price)

● Maximum Period: 48 Hours

● Minimum Period: 10 Minutes

● Leniency: 12 Hours

YES, This is valid.

File 14 XToken.sol
● XToken has functions like: mint, setMinter, etc.

YES, This is valid.

File 15 YToken.sol YES, This is valid.

● YToken has functions like: burn, etc.

File 16 LOVE.sol
● Total Supply: 30 Million

YES, This is valid.

File 17 MMFX.sol
● Genesis Supply: 100 will be minted at genesis for liq

pool seeding

YES, This is valid.

File 18 MMOX.sol
● Genesis Supply: 100 will be minted at genesis for liq

pool seeding

YES, This is valid.

File 19 MMUSD.sol
● Genesis Supply: 100 will be minted at genesis for liq

pool seeding

YES, This is valid.

File 20 DaoTreasury.sol
● DaoTreasury has functions like: balanceOf,

requestFund, etc.

YES, This is valid.

File 21 StratRecollateralize.sol
● StratRecollateralize has functions like: recollateralize.

YES, This is valid.

File 22 StratReduceReserveLP.sol
● StratReduceReserveLPhas functions like:

reduceReserve, swap.

YES, This is valid.

File 23 NFTController.sol
● NFTController has functions like: setBoostRate,

setWhitelist, etc.

YES, This is valid.

File 24 NFTControllerProxy.sol
● NFTControllerProxy has access to the

TransparentUpgradeableProxy contract.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 24 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Frontline DAO Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Frontline DAO Protocol.

The Frontline DAO team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a Frontline DAO Protocol smart contract code in the form of a file. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Pool.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 nonReentrant modifier Passed No Issue
8 info external Passed No Issue
9 usableCollateralBalance read Passed No Issue

10 calcMint read Passed No Issue
11 calcRedeem read Passed No Issue
12 calcExcessCollateralBala

nce
read Passed No Issue

13 refreshCollateralRatio write Passed No Issue
14 receive external Passed No Issue
15 mint external Passed No Issue
16 redeem external Passed No Issue
17 collect external Passed No Issue
18 recollateralize external Passed No Issue
19 checkPriceFluctuation internal Passed No Issue
20 toggle write access only Owner No Issue
21 setCollateralRatioOptions write access only Owner No Issue
22 toggleCollateralRatio write access only Owner No Issue
23 setFees write access only Owner No Issue
24 setMinCollateralRatio external access only Owner No Issue
25 reduceExcessCollateral external access only Owner No Issue
26 setSwapStrategy external access only Owner No Issue
27 setOracle external access only Owner No Issue
28 setYTokenSlippage external access only Owner No Issue
29 setTreasury external Passed No Issue
30 transferToTreasury internal Passed No Issue

SwapStrategyPOL.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue

4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 lpBalance read Passed No Issue
8 execute external Passed No Issue
9 calculateSwapInAmount internal Passed No Issue

10 swap internal Passed No Issue
11 addLiquidity internal Passed No Issue
12 cleanDust external access only Owner No Issue
13 changeSlippage external access only Owner No Issue

Timelock.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 setDelay write Passed No Issue
3 acceptAdmin write Passed No Issue
4 setPendingAdmin write Passed No Issue
5 queueTransaction write Passed No Issue
6 cancelTransaction write Passed No Issue
7 executeTransaction write Passed No Issue
8 getBlockTimestamp internal Passed No Issue

DaoChef.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 poolLength read Passed No Issue
8 pendingReward external Passed No Issue
9 updatePool write Passed No Issue

10 massUpdatePools write Passed No Issue
11 deposit write Passed No Issue
12 withdraw write Passed No Issue
13 harvest write Passed No Issue
14 withdrawAndHarvest write Passed No Issue
15 emergencyWithdraw write Passed No Issue
16 harvestAllRewards external Passed No Issue
17 checkPoolDuplicate internal Passed No Issue
18 add write access only Owner No Issue

19 set write access only Owner No Issue
20 setRewardPerSecond write access only Owner No Issue
21 setRewardMinter external Passed No Issue
22 getBoost read Passed No Issue
23 getSlots read Passed No Issue
24 getTokenIds read Passed No Issue
25 depositNFT write Passed No Issue
26 withdrawNFT write Passed No Issue
27 setNftController write access only Owner No Issue
28 setNftBoostRate write access only Owner No Issue

DaoStaking.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 addReward write Function input

parameters lack of
check

Refer Audit
Findings

8 approveRewardDistributor external access only Owner No Issue
9 _rewardPerToken internal Passed No Issue

10 _earned internal Passed No Issue
11 lastTimeRewardApplicable read Passed No Issue
12 rewardPerToken external Passed No Issue
13 getRewardForDuration external Passed No Issue
14 claimableRewards external Passed No Issue
15 totalBalance external Passed No Issue
16 unlockedBalance external Passed No Issue
17 earnedBalances external Passed No Issue
18 lockedBalances external Passed No Issue
19 withdrawableBalance read Passed No Issue
20 stake external Passed No Issue
21 mint external Function input

parameters lack of
check

Refer Audit
Findings

22 withdraw write Passed No Issue
23 getReward write Passed No Issue
24 emergencyWithdraw external Critical operation

lacks event log
Refer Audit

Findings
25 withdrawExpiredLocks external Passed No Issue
26 _notifyReward internal Passed No Issue
27 notifyRewardAmount external Passed No Issue

28 recoverERC20 external access only Owner No Issue
29 setTeamWalletAddress external Passed No Issue
30 setTeamRewardPercent external Passed No Issue
31 updateReward modifier Passed No Issue
32 receive external Passed No Issue

DaoZapMMSwap.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 nonReentrant modifier Passed No Issue
8 zap external Passed No Issue
9 swap internal Passed No Issue

10 doSwapETH internal Passed No Issue
11 approveToken internal Passed No Issue
12 calculateSwapInAmount internal Passed No Issue
13 addZap external access only Owner No Issue
14 removeZap external access only Owner No Issue

NFTController.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 initializer modifier Passed No Issue
8 reinitializer modifier Passed No Issue
9 onlyInitializing modifier Passed No Issue

10 _disableInitializers internal Passed No Issue
11 _setInitializedVersion write Passed No Issue
12 initialize write access by initializer No Issue
13 getBoostRate external Passed No Issue
14 setWhitelist external access only Owner No Issue
15 setDefaultBoostRate external access only Owner No Issue
16 setBoostRate external access only Owner No Issue

NFTControllerProxy.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 ifAdmin modifier Passed No Issue
3 admin external access if Admin No Issue
4 implementation external access if Admin No Issue
5 changeAdmin external access if Admin No Issue
6 upgradeTo external access if Admin No Issue
7 upgradeToAndCall external access if Admin No Issue
8 _admin internal Passed No Issue
9 _beforeFallback internal Passed No Issue

Fund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 initializer modifier Passed No Issue
8 reinitializer modifier Passed No Issue
9 onlyInitializing modifier Passed No Issue

10 _disableInitializers internal Passed No Issue
11 _setInitializedVersion write Passed No Issue
12 initialize external Passed No Issue
13 allocation read Passed No Issue
14 vestingStart read Passed No Issue
15 vestingDuration read Passed No Issue
16 currentBalance read Passed No Issue
17 vestedBalance read Passed No Issue
18 claimable read Passed No Issue
19 transfer external access only Owner No Issue

DaoFund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize external Passed No Issue
3 allocation read Passed No Issue

4 vestingStart read Passed No Issue
5 vestingDuration read Passed No Issue
6 currentBalance read Passed No Issue
7 vestedBalance read Passed No Issue
8 claimable read Passed No Issue
9 transfer external access only Owner No Issue

10 allocation write Passed No Issue
11 vestingStart write Passed No Issue
12 vestingDuration write Passed No Issue

DevFund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize external Passed No Issue
3 allocation read Passed No Issue
4 vestingStart read Passed No Issue
5 vestingDuration read Passed No Issue
6 currentBalance read Passed No Issue
7 vestedBalance read Passed No Issue
8 claimable read Passed No Issue
9 transfer external access only Owner No Issue

10 allocation write Passed No Issue
11 vestingStart write Passed No Issue
12 vestingDuration write Passed No Issue

Reserve.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 initializer modifier Passed No Issue
8 reinitializer modifier Passed No Issue
9 onlyInitializing modifier Passed No Issue

10 _disableInitializers internal Passed No Issue
11 _setInitializedVersion write Passed No Issue
12 initialize external access by initializer No Issue
13 setRewarder external Passed No Issue
14 setPool external access only Owner No Issue
15 removePool external access only Owner No Issue

16 transfer external Passed No Issue

TreasuryFund.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize external Passed No Issue
3 allocation read Passed No Issue
4 vestingStart read Passed No Issue
5 vestingDuration read Passed No Issue
6 currentBalance read Passed No Issue
7 vestedBalance read Passed No Issue
8 claimable read Passed No Issue
9 transfer external access only Owner No Issue

10 allocation write Passed No Issue
11 vestingStart write Passed No Issue
12 vestingDuration write Passed No Issue

MasterOracle.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 getXTokenPrice write Passed No Issue
8 getYTokenPrice write Passed No Issue
9 getXTokenTWAP write Passed No Issue

10 getYTokenTWAP write Passed No Issue

UniswapPairOracle.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 setPeriod external access only Owner No Issue

8 update external Passed No Issue
9 twap external Passed No Issue

10 spot external Passed No Issue
11 currentBlockTimestamp internal Passed No Issue
12 currentCumulativePrices internal Passed No Issue

XToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyMinter modifier Passed No Issue
3 setMinter external access only Owner No Issue
4 removeMinter external access only Owner No Issue
5 mint external Unlimited Minting Refer Audit

Findings
6 burn write Passed No Issue
7 burnFrom write Passed No Issue
8 owner read Passed No Issue
9 onlyOwner modifier Passed No Issue

10 renounceOwnership write access only Owner No Issue
11 transferOwnership write access only Owner No Issue
12 _transferOwnership internal Passed No Issue

YToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 burn write Passed No Issue
3 burnFrom write Passed No Issue

LOVE.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 OpenTrade external Passed No Issue
3 includeToWhitelist write Passed No Issue
4 excludeFromWhitlist write Passed No Issue
5 _transfer internal Passed No Issue

MMFX.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyMinter modifier Passed No Issue
3 setMinter external access only Owner No Issue
4 removeMinter external access only Owner No Issue
5 mint external access only Minter No Issue
6 OpenTrade external Passed No Issue
7 includeToWhitelist write Passed No Issue
8 excludeFromWhitlist write Passed No Issue
9 _transfer internal Passed No Issue

MMOX.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyMinter modifier Passed No Issue
3 setMinter external access only Owner No Issue
4 removeMinter external access only Owner No Issue
5 mint external access only Minter No Issue
6 OpenTrade external Passed No Issue
7 includeToWhitelist write Passed No Issue
8 excludeFromWhitlist write Passed No Issue
9 _transfer internal Passed No Issue

MMUSD.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onlyMinter modifier Passed No Issue
3 setMinter external access only Owner No Issue
4 removeMinter external access only Owner No Issue
5 mint external access only Minter No Issue
6 OpenTrade external Passed No Issue
7 includeToWhitelist write Passed No Issue
8 excludeFromWhitlist write Passed No Issue
9 _transfer internal Passed No Issue

DaoTreasury.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 balanceOf r Passed No Issue
8 requestFund external Passed No Issue
9 addStrategy external access only Owner No Issue

10 removeStrategy external access only Owner No Issue
11 allocateFee external access only Owner No Issue

StratRecollateralize.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 recollateralize external access only Owner No Issue
8 receive external Passed No Issue

StratReduceReserveLP.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 reduceReserve external access only Owner No Issue
8 swap internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:- DaoStaking.sol

Missing event log for: emergencyWithdraw

Resolution: Write an event log for listed events.

(2) Function input parameters lack of check: - DaoStaking.sol

Variable validation is not performed in the functions below:

● addReward =_rewardsToken

● mint = user

Resolution: We advise to put validation like integer type variables should be greater than

0 and address type variables should not be address(0).

Very Low / Informational / Best practices:

(1) Unlimited Minting: - XToken.sol

Minter can mint unlimited tokens.

Resolution: We suggest putting a minting limit.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● toggle: Pool owner can Turn on / off minting and redemption.

● setCollateralRatioOptions: Pool owner can configure variables related to Collateral

Ratio.

● toggleCollateralRatio: Pool Owner can pause or unpause collateral ratio updates.

● setFees: Pool owners can set the protocol fees.

● setMinCollateralRatio: Pool owner can set the minimum Collateral Ratio.

● reduceExcessCollateral: Pool owner can transfer the excess balance of WETH to

FeeReserve.

● setSwapStrategy: Pool owner can set the address of Swapper utils.

● setOracle: Pool owner can set new oracle address.

● setYTokenSlippage: Pool owner can set yTokenSlipage.

● setTreasury: Pool owner can set the address of the Treasury.

● cleanDust: SwapStrategyPOL owner can clean dust.

● changeSlippage: SwapStrategyPOL owner can change slippage value.

● add: DaoChef owner can add a new LP to the pool.

● set: DaoChef owner can update the given pool's reward allocation point and

`IRewarder` contract.

● setRewardPerSecond: DaoChef owner can set the reward per second to be

distributed.

● setRewardMinter: DaoChef owner can set the address of rewardMinter.

● setNftController: DaoChef owner can set NFT controller address.

● setNftBoostRate: DaoChef owner can set NFT Boost Rate value.

● addReward: DaoStaking owner can add a new reward token to be distributed to

stakers.

● approveRewardDistributor: DaoStaking owner can modify approval for an address

to call notifyRewardAmount.

● recoverERC20: DaoStaking owner can be added to support recovering LP

Rewards from other systems such as BAL to be distributed to holders.

● setTeamWalletAddress: DaoStaking owner can set the address of the team wallet.

● setTeamRewardPercent: DaoStaking owner can set percent of team reward.

● addZap: DaoZapMMSwap owner can add new zap configuration.

● removeZap: DaoZapMMSwap owner can deactivate a Zap configuration.

● setWhitelist: NFTController owner can set whitelist address,

● setDefaultBoostRate: NFTController owner can set default boost rate value.

● setBoostRate: NFTController owner can set boost rate value.

● transfer: Fund owners can transfer tokens.

● setPool: Reserve owner can set pool address.

● removePool: Reserve owner can remove pool address.

● setPeriod: UniswapPairOracle owner can set maximum and minimum period.

● removeMinter: XToken minter can remove minter address.

● setMinter: XToken minter can set minter for XToken.

● mint: XToken minter can mint new XToken.

● OpenTrade: LOVE owners can trade openly.

● includeToWhitelist: LOVE owner can include address to whitelist.

● excludeFromWhitlist: LOVE owner can exclude address to whitelist.

● OpenTrade: MMFX owners can trade openly.

● includeToWhitelist: MMFX owner can include address to whitelist.

● excludeFromWhitlist: MMFX owner can exclude address to whitelist.

● OpenTrade: MMOX owners can trade openly.

● includeToWhitelist: MMOX owner can include address to whitelist.

● excludeFromWhitlist: MMOX owner can exclude address to whitelist.

● OpenTrade: MMUSD owners can trade openly.

● includeToWhitelist: MMUSD owner can include address to whitelist.

● excludeFromWhitlist: MMUSD owner can exclude address to whitelist.

● addStrategy: DaoTreasury owner can add new strategy.

● removeStrategy: DaoTreasury owner can remove current strategy.

● allocateFee: DaoTreasury owner can allocate protocol's fee to stakers.

● recollateralize: StratRecollateralize owner can recollateralize the minting pool.

● reduceReserve: StratReduceReserveLP owner can remove liquidity, buy back

YToken and burn.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

airdrop smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Frontline DAO Protocol

Pool Diagram

SwapStrategyPOL Diagram

DaoChef Diagram

DaoStaking Diagram

DaoZapMMSwap Diagram

Timelock Diagram

NFTController Diagram

NFTControllerProxy Diagram

DaoFund Diagram

DevFund Diagram

Fund Diagram

Reserve Diagram

TreasuryFund Diagram

MasterOracle Diagram

UniswapPairOracle Diagram

XToken Diagram

YToken Diagram

LOVE Diagram

MMFX Diagram

MMOX Diagram

MMUSD Diagram

DaoTreasury Diagram

StratRecollateralize Diagram

StratReduceReserveLP Diagram

Slither Results Log

Slither log >> Pool.sol

Slither log >> SwapStrategyPOL.sol

Slither log >> Timelock.sol

Slither log >> DaoChef.sol

Slither log >> DaoStaking.sol

Slither log >> DaoZapMMSwap.sol

Slither log >> NFTController.sol

Slither log >> NFTControllerProxy.sol

Slither log >> DaoFund.sol

Slither log >> DevFund.sol

Slither log >> Fund.sol

Slither log >> Reserve.sol

Slither log >> TreasuryFund.sol

Slither log >> MasterOracle.sol

Slither log >> UniswapPairOracle.sol

Slither log >> XToken.sol

Slither log >> YToken.sol

Slither log >> LOVE.sol

Slither log >> MMFX.sol

Slither log >> MMOX.sol

Slither log >> MMUSD.sol

Slither log >> DaoTreasury.sol

Slither log >> StratRecollateralize.sol

Slither log >> StratReduceReserveLP.sol

