
Project: Edov NFT Protocol
Website: https://edoverse.io/
Platform: Ethereum
Language: Solidity
Date: September 24th, 2022

https://edoverse.io/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………. 6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 30

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Edov NFT protocol to perform the Security audit of the
Edov NFT protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on September 24th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Edov NFT is an NFT marketplace smart contract in which users can list/unlist their NFT,

buy NFT by giving ERC20 tokens, etc. Edov NFT contract inherits IERC721,

IERC721Receiver, IERC20, SafeMath, OwnableUpgradeable, Initializable standard smart

contracts from the OpenZeppelin library. These OpenZeppelin contracts are considered

community audited and time tested, and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Edov NFT Protocol Smart Contracts

Platform Ethereum / Solidity

File 1 EdoMarketplace.sol

File 1 MD5 Hash 8DBDEFA1FA11CEDD76F7339AC7B8EA47

Updated File 1 MD5 Hash 269D5D163EC08D1454347A508E478BE4

File 2 EdoMarketplaceManagement.sol

File 2 MD5 Hash 49864F564787FFCC543A2B672BD0C8D1

File 3 EdoMarketplaceManagementAdmin.sol

File 3 MD5 Hash F7CA96695EB28A927E4A72BD336D5339

Updated File 3 MD5 Hash 1B0027A01C3B91F52D97E37BEA935D21

Audit Date September 24th, 2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 EdoMarketplace.sol
● EdoMarketplace can list NFT contract addresses.

● EdoMarketplace owners can cancel trade.

● EdoMarketplace can provide NFT information.

● EdoMarketplace can provide listings for Edo NFT.

YES, This is valid.

File 2 EdoMarketplaceManagement.sol
● Minimum Fee Rate: 1%

● Maximum Fee Rate: 10%

● Non Agent Fee: 5%

● Demominator: 100

● EdoMarketplaceManagement can set service fee

rates.

● EdoMarketplaceManagement owner can deposit

fee amount.

● EdoMarketplaceManagement owner can withdraw

a token from the payment contract address.

YES, This is valid.

File 3 EdoMarketplaceManagementAdmin.sol
● EdoMarketplaceManagementAdmin owners can

set deposit addresses, agent addresses, Edo

verse foundation addresses, Edo verseInc

addresses.

● EdoMarketplaceManagementAdmin owners can

set fee rate distribution.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 1 medium and 1 low and some very low level issues.
All the issues have been resolved in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 3 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Edov NFT Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Edov NFT Protocol.

The Edov NFT team has provided unit test scripts, which would have helped to determine

the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a Edov NFT smart contract code in the form of a file. The hash of that

code is mentioned above in the table.

As mentioned above, code parts are not well commented. but the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://edoverse.io/ which provided

rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://edoverse.io/

AS-IS overview

EdoMarketplace.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyEdoNft modifier Passed No Issue
3 onlyNftOwner modifier Passed No Issue
4 initialize write Passed No Issue
5 approveErc20 external Passed No Issue
6 approveErc721 external Passed No Issue
7 setListingNFT write access only Edo Nft No Issue
8 buyEdoNFT write access only Edo Nft No Issue
9 cancelTrade write access only Nft Owner No Issue

10 getEdoNFTInfo write access only Edo Nft No Issue
11 getListingEdoNfts read Passed No Issue
12 getHash write Passed No Issue
13 _setNftMeta internal Passed No Issue
14 onlyAgent modifier Passed No Issue
15 feeLimit modifier Passed No Issue
16 setAgentRefundAddress external access only Agent No Issue
17 setServiceFeeRate write Passed No Issue
18 depositFeeAmount external access only Owner No Issue
19 withdraw external access only Owner No Issue

EdoMarketplaceManagement.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyAgent modifier Passed No Issue
3 feeLimit modifier Passed No Issue
4 setAgentRefundAddress external access only Agent No Issue
5 setServiceFeeRate write Passed No Issue
6 depositFeeAmount external access only Owner No Issue
7 withdraw external access only Owner No Issue
8 setDepositAddress external access only Owner No Issue
9 setAgentAddress external access only Owner No Issue

10 setEdoVerseFoundationA
ddress

external access only Owner No Issue

11 setEdoVerseIncAddress external access only Owner No Issue
12 includeNFTContractAddr

ess
external access only Owner No Issue

13 excludeNFTContractAddr
ess

external access only Owner No Issue

14 isApprovedNFTContractA
ddress

external access only Owner No Issue

15 includePaymentContract
Address

external access only Owner No Issue

16 excludePaymentContract
Address

external access only Owner No Issue

17 isApprovedPaymentContr
actAddress

external access only Owner No Issue

18 setFeeRateDistribution external access only Owner No Issue

EdoMarketplaceManagementAdmin.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 setDepositAddress external access only Owner No Issue
3 setAgentAddress external access only Owner No Issue
4 setEdoVerseFoundationA

ddress
external access only Owner No Issue

5 setEdoVerseIncAddress external access only Owner No Issue
6 includeNFTContractAddr

ess
external access only Owner No Issue

7 excludeNFTContractAddr
ess

external access only Owner No Issue

8 isApprovedNFTContractA
ddress

external access only Owner No Issue

9 includePaymentContract
Address

external access only Owner No Issue

10 excludePaymentContract
Address

external access only Owner No Issue

11 isApprovedPaymentContr
actAddress

external access only Owner No Issue

12 setFeeRateDistribution external access only Owner No Issue
13 __Ownable_init internal access only Initializing No Issue
14 __Ownable_init_unchain

ed
internal access only Initializing No Issue

15 onlyOwner modifier Passed No Issue
16 owner read Passed No Issue
17 _checkOwner internal Passed No Issue
18 renounceOwnership write access only Owner No Issue
19 transferOwnership write access only Owner No Issue
20 _transferOwnership internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Wrong TotalFee calculation: EdoMarketplaceManagementAdmin.sol

In the setFeeRateDistribution function, totalFeeRate is validated for the global variables

which have been set while initialization. In case the admin has set wrong fees, totaling

greater than 100, then admin cannot change fees again.

Resolution: We suggest using the input parameters for totaling and validation equal to

100 before setting the variables.

Status: Fixed.

Medium

(1) Irrelevant token standard and method: EdoMarketplace.sol

In the approveErc20 function, paymentContractAddress is IERC721 token standard and

the approved method has the amount as the second parameter which is irrelevant.

IERC721 should have TokenId as the second parameter.

Resolution: We suggest either to change the tokenStandard from IERC721 to IERC20 Or

change the approved method's second parameter from amount to tokenId.

Status: Fixed.

Low

(1) Function input parameters lack of check: EdoMarketplaceManagementAdmin.sol

Variable validation is not performed in below functions:

● setDepositAddress = _depositAddress.

Resolution: We advise to put validation: int type variables should not be empty and > 0 &

address type variables should not be address(0).

Status: Fixed.

Very Low / Informational / Best practices:

(1) Unused variable: EdoMarketplaceManagement.sol

NON_AGENT_FEE is defined as constant but not used anywhere.

Resolution: We suggest removing unused variables.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● cancelTrade: EdoMarketplace owner can cancel trade.

● setAgentRefundAddress: EdoMarketplaceManagement agent owner can set agent

refund address.

● setServiceFeeRate: EdoMarketplaceManagement agent owner can set service fee

rate values.

● depositFeeAmount: EdoMarketplaceManagement owner can deposit fee amount.

● setDepositAddress: EdoMarketplaceManagementAdmin owner can set deposit

address.

● setAgentAddress: EdoMarketplaceManagementAdmin owner can set agent

address.

● setEdoVerseFoundationAddress: EdoMarketplaceManagementAdmin owner can

set edo verse foundation address.

● setEdoVerseIncAddress: EdoMarketplaceManagementAdmin owner can set edo

verse Inc address.

● includeNFTContractAddress: EdoMarketplaceManagementAdmin owner can

include NFT contract address.

● excludeNFTContractAddress: EdoMarketplaceManagementAdmin owner can

exclude NFT contract address.

● isApprovedNFTContractAddress: EdoMarketplaceManagementAdmin owner can

set issapproved NFT contract address.

● includePaymentContractAddress: EdoMarketplaceManagementAdmin owner can

include payment contract address.

● excludePaymentContractAddress: EdoMarketplaceManagementAdmin owner can

exclude payment contract address.

● isApprovedPaymentContractAddress: EdoMarketplaceManagementAdmin owner

can set approved payment contract address.

● setFeeRateDistribution: EdoMarketplaceManagementAdmin owner can set fee rate

distribution value.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We have observed 1 high severity issue, 1 medium

severity issue,1 low severity issue and some very low level issue in smart contracts. All the

issues have been fixed in the revised code. So smart contracts are ready for mainnet
deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Edov NFT Protocol

EdoMarketplace Diagram

EdoMarketplaceManagement Diagram

EdoMarketplaceManagementAdmin Diagram

Slither Results Log

Slither log >> EdoMarketplace.sol

Slither log >> EdoMarketplaceManagement.sol

Slither log >> EdoMarketplaceManagementAdmin.sol

Solidity Static Analysis
EdoMarketplace.sol

EdoMarketplaceManagement.sol

EdoMarketplaceManagementAdmin.sol

Solhint Linter

EdoMarketplace.sol

EdoMarketplace.sol:2:1: Error: Compiler version ^0.8.15 does not
satisfy the r semver requirement

EdoMarketplaceManagement.sol

EdoMarketplaceManagement.sol:2:1: Error: Compiler version ^0.8.15
does not satisfy the r semver requirement
EdoMarketplaceManagement.sol:12:5: Error: Explicitly mark visibility
of state
EdoMarketplaceManagement.sol:13:5: Error: Explicitly mark visibility
of state
EdoMarketplaceManagement.sol:14:5: Error: Explicitly mark visibility
of state
EdoMarketplaceManagement.sol:15:5: Error: Explicitly mark visibility
of state

EdoMarketplaceManagementAdmin.sol

EdoMarketplaceManagementAdmin.sol:2:1: Error: Compiler version
^0.8.15 does not satisfy the r semver requirement
EdoMarketplaceManagementAdmin.sol:46:9: Error: Variable name must be
in mixedCase
EdoMarketplaceManagementAdmin.sol:54:40: Error: Variable name must be
in mixedCase
EdoMarketplaceManagementAdmin.sol:58:43: Error: Variable name must be
in mixedCase

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

