
Project: Bitindi Chain
Website: https://bitindi.org
Platform: Bitindi Chain Network
Language: Solidity
Date: January 9th, 2023

https://bitindi.org

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………. 7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 21

Our Methodology ………………………………………………………………………………... 22

Disclaimers ………………………………………………………………………………………. 24

Appendix

● Code Flow Diagram ……………………………………………………………………... 25

● Slither Results Log ………………………………………………………………………. 29

● Solidity static analysis ….……………………………………………………………….. 35

● Solhint Linter …………………………………………………………………….……….. 44

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Bitindi Chain to perform the Security audit of the Bitindi
Chain protocol smart contracts code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on January 9th, 2023.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Bitindi Chain is an EVM compatible chain for DeFi with BPoC consensus.

● Bitindi is a layer 1 blockchain for DeFi, NFTs and gaming. It is built with GO, has

EVM support and uses BPoS consensus mechanism.

● The audit scope consists of system smart contracts of the Bitindi Chain. The system

smart contracts contribute heavily to the consensus mechanism.

● The system smart contracts performs actions such as Validations, system staking,

punishments, etc.

Audit scope

Name Code Review and Security Analysis Report for
Bitindi Chain System Smart Contracts

Platform Bitindi Chain Network / Solidity

File 1 Params.sol

File 1 Github Commit 8934bd3061e60c318df9964c3bce5cc5aa4fc415

File 2 Proposal.sol

File 2 Github Commit a275e201f5eaaa8d905c0f34f4d6ceac89a13dc5

File 3 Punish.sol

File 3 Github Commit 968edb382b8844a48e35896325784c802c5bb0b4

File 4 Validators.sol

File 4 Github Commit 2e735aa622a3645fefe04eb6bd0f381ee2b052ba

File 5 SafeMath.sol

File 5 Github Commit 43e71365448f47ce2bca5cdfc80a47223de5a048

File 6 Bridge.sol

File 6 Github Commit 5048350ff9ba9887de0fb0c82947649aed51744e

File 7 PeggedToken.sol

File 7 Github Commit fdc345f789750d4a19047524f7359a3717c01534

Audit Date January 9th, 2023

https://github.com/bitindi/System-Contracts/blob/main/Params.sol
https://github.com/bitindi/System-Contracts/blob/main/Proposal.sol
https://github.com/bitindi/System-Contracts/blob/main/Punish.sol
https://github.com/bitindi/System-Contracts/blob/main/Validators.sol
https://github.com/bitindi/System-Contracts/blob/main/SafeMath.sol
https://github.com/bitindi/Bridge-Contracts/blob/main/Bridge.sol
https://github.com/bitindi/Bridge-Contracts/blob/main/PeggedToken.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

HPN Tokenomics
● Coin name: Bitindi Chain

● Coin symbol: BNI

● Decimal: 18

● Total Supply: 50 Million

● No more coins generated ever

YES, This is valid.

Validators.sol
● Maximum Validators: 21

● Minimal Staking Coin: 32 BNI

YES, This is valid.

Punish.sol
● The validator can be punished for misbehavior.

● Validators can clean validator's punish records if one

restake in.

YES, This is valid.

Params.sol
● It holds parameters of other smart contracts

YES, This is valid.

Proposal.sol
● New validator has to be voted by over 50% of validators

YES, This is valid.

Bridge.sol
● It allows ETH, BSC and Polygon assets to be exchanged

for the Bitindi chain assets

● This is a centralized solution and has heavy ownership

control.

YES, This is valid.

PeggedToken.sol
● BIP-20 token standard, which is similar to ERC20

● This is a centralized solution and the owner has full

control of token minting and burning.

● Unlimited tokens can be minted. so, use caution.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 0 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 7 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Bitindi Chain Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Bitindi Chain Protocol.

The Bitindi Chain team has not provided unit test scripts, which would not help to

determine the integrity of the code in an automated way.

All code parts are not well commented on smart contracts.

Documentation

We were given a Bitindi Chain smart contract code in the form of a Github link. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its website: https://bitindi.org which provided rich

information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://bitindi.org

AS-IS overview

Params.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyMiner modifier Passed No Issue
3 onlyNotInitialized modifier Passed No Issue
4 onlyInitialized modifier Passed No Issue
5 onlyPunishContract modifier Passed No Issue
6 onlyBlockEpoch modifier Passed No Issue
7 onlyValidatorsContract modifier Passed No Issue
8 onlyProposalContract modifier Passed No Issue

Proposal.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyMiner modifier Passed No Issue
3 onlyNotInitialized modifier Passed No Issue
4 onlyInitialized modifier Passed No Issue
5 onlyPunishContract modifier Passed No Issue
6 onlyBlockEpoch modifier Passed No Issue
7 onlyValidatorsContract modifier Passed No Issue
8 onlyProposalContract modifier Passed No Issue
9 onlyValidator modifier Passed No Issue

10 initialize external Infinite loops
possibility, Critical

operation lacks
event log

Refer Audit
Findings

11 createProposal external Passed No Issue
12 voteProposal external access only

Validator
No Issue

13 setUnpassed external access only
Validators Contract

No Issue

Punish.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyMiner modifier Passed No Issue
3 onlyNotInitialized modifier Passed No Issue
4 onlyInitialized modifier Passed No Issue
5 onlyPunishContract modifier Passed No Issue
6 onlyBlockEpoch modifier Passed No Issue
7 onlyValidatorsContract modifier Passed No Issue
8 onlyProposalContract modifier Passed No Issue
9 onlyNotPunished modifier Passed No Issue

10 onlyNotDecreased modifier Passed No Issue
11 initialize external access only

NotInitialized
No Issue

12 punish external access only Miner No Issue
13 decreaseMissedBlocksCounter external access only Miner No Issue
14 cleanPunishRecord external Critical operation

lacks event log
Refer Audit

Findings
15 getPunishValidatorsLen read Passed No Issue
16 getPunishRecord read Passed No Issue

Validators.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onlyMiner modifier Passed No Issue
3 onlyNotInitialized modifier Passed No Issue
4 onlyInitialized modifier Passed No Issue
5 onlyPunishContract modifier Passed No Issue
6 onlyBlockEpoch modifier Passed No Issue
7 onlyValidatorsContract modifier Passed No Issue
8 onlyProposalContract modifier Passed No Issue
9 onlyNotRewarded modifier Passed No Issue

10 onlyNotUpdated modifier Passed No Issue
11 setContractCreator write Critical operation

lacks event log
Refer Audit

Findings
12 initialize external Infinite loops

possibility, Critical
operation lacks

event log

Refer Audit
Findings

13 stake external access only
Initialized

No Issue

14 createOrEditValidator external access only
Initialized

No Issue

15 tryReactive external access only
Initialized

No Issue

16 unstake external access only
Initialized

No Issue

17 withdrawStakingReward write Passed No Issue
18 withdrawStaking external Passed No Issue
19 withdrawProfits external Passed No Issue
20 distributeBlockReward external Infinite loops

possibility
Refer Audit

Findings
21 updateActiveValidatorSet write access only Miner No Issue
22 removeValidator external access only Punish

Contract
No Issue

23 removeValidatorIncoming external access only Punish
Contract

No Issue

24 getValidatorDescription read Passed No Issue
25 getValidatorInfo read Passed No Issue
26 getStakingInfo read Passed No Issue
27 getActiveValidators read Passed No Issue
28 getTotalStakeOfActiveValidators read Passed No Issue
29 getTotalStakeOfActiveValidators

Except
read Passed No Issue

30 isActiveValidator read Passed No Issue
31 isTopValidator read Passed No Issue
32 getTopValidators read Passed No Issue
33 validateDescription write Passed No Issue
34 tryAddValidatorToHighestSet internal Passed No Issue
35 tryRemoveValidatorIncoming write Passed No Issue
36 addProfitsToActiveValidatorsBySt

akePercentExcept
write Passed No Issue

37 tryJailValidator write Passed No Issue
38 tryRemoveValidatorInHighestSet write Passed No Issue
39 viewStakeReward read Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens loss

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) SafeMath not used: - Validators.sol

In the "distributeBlockReward()" function, SafeMath library has not been used.

Resolution: We checked and no direct overflow/underflow is possible. But we suggest

using the safemath functions to avoid any possible reentrancy issues.

Status: We got confirmation from Bitindi chain team to acknowledge this issue, as
no direct overflow/underflow is possible.

(2) Spelling mistake: - Validators.sol

Spelling mistakes in comments.

“valiadtor” word should be “validator.”

Resolution: Correct the spelling.

Status: This is acknowledged by the Bitindi chain team

(3) Compile time error: - Proposal.sol

There is found typed number “3” in line number “6” of the contract code, it gives a compile

time error.

Resolution: We suggest removing 3 numbers from contract code line number 6.

Status: The Bitindi team has fixed this issue.

(4) Critical operation lacks event log:

Missing event log for:

Validators.sol

● initialize()

Proposal.sol

● initialize()

Punish.sol

● cleanPunishRecord()

Resolution: Please write an event log for listed events.

Status: This issue is acknowledged by the Bitindi chain, as these functions are
called by the system and not called again ever.

(5) Compile time error:

There are import 4 contract files path are:

import "Params.sol";

import "Proposal.sol";

import "Punish.sol";

import "SafeMath.sol";

Resolution: Import contract file path should be:

import "./Params.sol";

import "./Proposal.sol";

import "./Punish.sol";

import "./SafeMath.sol";

Status: This issue is fixed while contract deployment

(6) Infinite loops possibility:

Validators.sol

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

Status: This issue is acknowledged by the Bitindi chain team as this records will
never be more than 21

(7) Please use the latest compiler version when deploying contracts:

This is not a severe issue, but we suggest using the latest compiler version at the time of

contract deployment, which is 0.8.17 at the time of this audit. Using the latest compiler

version is always recommended which prevents any compiler level issues.

Status: This issue is acknowledge

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● coinOut function in Bridge contract can let signer wallet to take all coins out.

● tokenOut function in the Bridge contract can let the signer wallet take all the tokens

out.

● transferOwnership function in Bridge and Pegged token smart contract can let the

owner to transfer the ownership to another wallet.

● mint function in the PeggedToken smart contract can let owner to mint tokens.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a github link. And we have used all possible

tests based on given objects as files. We have observed some informational issues in the

smart contracts. But those are not critical ones. So smart contracts are good to go for
the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secure”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Bitindi Chain Protocol

Params Diagram

Proposal Diagram

Punish Diagram

Validators Diagram

Slither Results Log
Slither Log >> Params.sol

Slither Log >> Proposal.sol

Slither Log >> Punish.sol

Slither Log >> Validators.sol

Solidity Static Analysis
Params.sol

Proposal.sol

Punish.sol

Validators.sol

Solhint Linter

Params.sol

Params.sol:2:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
Params.sol:9:25: Error: Constant name must be in capitalized
SNAKE_CASE
Params.sol:11:25: Error: Constant name must be in capitalized
SNAKE_CASE
Params.sol:13:25: Error: Constant name must be in capitalized
SNAKE_CASE
Params.sol:16:28: Error: Constant name must be in capitalized
SNAKE_CASE
Params.sol:18:28: Error: Constant name must be in capitalized
SNAKE_CASE
Params.sol:20:28: Error: Constant name must be in capitalized
SNAKE_CASE
Params.sol:21:29: Error: Constant name must be in capitalized
SNAKE_CASE

Proposal.sol

Proposal.sol:2:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
Proposal.sol:43:5: Error: Explicitly mark visibility of state
Proposal.sol:94:56: Error: Avoid to make time-based decisions in your
business logic
Proposal.sol:128:44: Error: Avoid to make time-based decisions in
your business logic
Proposal.sol:151:57: Error: Avoid to make time-based decisions in
your business logic
Proposal.sol:161:59: Error: Avoid to make time-based decisions in
your business logic
Proposal.sol:175:34: Error: Avoid to make time-based decisions in
your business logic

Punish.sol

Punish.sol:2:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
Punish.sol:23:5: Error: Explicitly mark visibility of state
Punish.sol:24:5: Error: Explicitly mark visibility of state
Punish.sol:72:38: Error: Avoid to make time-based decisions in your
business logic

Validators.sol

Validators.sol:3:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
Validators.sol:10:1: Error: Contract has 19 states declarations but
allowed no more than 15
Validators.sol:92:5: Error: Explicitly mark visibility of
stateValidators.sol:136:9: Error: Variable name must be in mixedCase
Validators.sol:146:5: Error: Event name must be in CamelCase
Validators.sol:171:38: Error: Avoid to use tx.origin
Validators.sol:181:39: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:262:51: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:519:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
Validators.sol:523:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.
Validators.sol:535:60: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:566:46: Error: Avoid to make time-based decisions in
your business logic
Validators.sol:875:54: Error: Avoid to make time-based decisions in
your business logic

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

