
Project: Alliance NFT Protocol
Website: thealliancenft.com
Platform: Avalanche Network
Language: Solidity
Date: August 4th, 2022

https://thealliancenft.com/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 28

● Solidity static analysis ….……………………………………………………………….. 32

● Solhint Linter …………………………………………………………………….……….. 38

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Alliance NFT Protocol to perform the Security audit of
the Alliance NFT Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on August 4th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Alliance NFT is an NFT smart contract having functionalities like whitelisted users

can mint NFT tokens by giving USDC token, stake NFT, unstake NFT, claim

rewards in terms of USDC tokens, setting royalties, etc.

● The Alliance NFT Token contract inherits ERC721URIStorage,

ReentrancyGuardUpgradeable, ERC721EnumerableUpgradeable, Address,

OwnableUpgradeable, IERC20, ERC2981, SafeMathUpgradeable, MerkleProof,

Ownable standard smart contracts from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community- audited and time-tested,

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Alliance NFT Protocol Smart Contracts

Platform Avalanche / Solidity

File 1 AllianceNFT.sol

File 1 MD5 Hash 33BF8FE02E6D91FFE42B037CE11E0BF5

File 2 NodeManager.sol

File 2 MD5 Hash E8FC4F6E8E743568832A86E81C55922B

File 3 RoyaltiesAddon.sol

File 3 MD5 Hash 4686079609560B3BB19C79E54949A499

File 4 Royalties.sol

File 4 MD5 Hash D6FC083A9C1349C266EF8ED806BEEED6

Audit Date August 4th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 AllianceNFT.sol
● Name: The Alliance

● Symbol: ALLIANCE

● The owner can add, remove, update a tier.

● The owner can set a USDC token address.

● The owner can set blacklist and whitelist addresses.

● Maximum NFT: 250

● Maximum NFT per user: 10

YES, This is valid.

File 2 NodeManager.sol
● The owner can set a reward address, USDC token

address, NFT address, etc.

● The owner can set blacklist addresses.

YES, This is valid.

File 3 RoyaltiesAddon.sol
● RoyaltiesAddon can internally set royalties

addresses.

YES, This is valid.

File 4 Royalties.sol
● Creator Royalties: 1%

● Community Royalties: 3%

● Collection Size: 10,000

● The owner can set royalties address, creator

address, smaller collection size, etc.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 4 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Alliance NFT Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Alliance NFT Protocol.

The Alliance NFT team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given an Alliance NFT Protocol smart contract code in the form of a file. The

hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://thealliancenft.com/ which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://thealliancenft.com/

AS-IS overview

AllianceNFT.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __ERC721Enumerable_i

nit
internal access only

Initializing
No Issue

3 __ERC721Enumerable_i
nit_unchained

internal access only
Initializing

No Issue

4 supportsInterface read Passed No Issue
5 tokenOfOwnerByIndex read Passed No Issue
6 totalSupply read Passed No Issue
7 tokenByIndex read Passed No Issue
8 __ReentrancyGuard_init internal access only

Initializing
No Issue

9 _beforeTokenTransfer internal Passed No Issue
10 _addTokenToOwnerEnu

meration
write Passed No Issue

11 _addTokenToAllTokensEn
umeration

write Passed No Issue

12 _removeTokenFromOwn
erEnumeration

write Passed No Issue

13 _removeTokenFromAllTo
kensEnumeration

write Passed No Issue

14 __ReentrancyGuard_init_
unchained

internal access only
Initializing

No Issue

15 nonReentrant modifier Passed No Issue
16 _nonReentrantBefore write Passed No Issue
17 _nonReentrantAfter write Passed No Issue
18 __Ownable_init internal access only

Initializing
No Issue

19 __Ownable_init_unchain
ed

internal access only
Initializing

No Issue

20 onlyOwner modifier Passed No Issue
21 owner read Passed No Issue
22 _checkOwner internal Passed No Issue
23 renounceOwnership write access only Owner No Issue
24 transferOwnership write access only Owner No Issue
25 _transferOwnership internal Passed No Issue
26 supportsInterface read Passed No Issue
27 royaltyInfo read Passed No Issue
28 _feeDenominator internal Passed No Issue
29 _setDefaultRoyalty internal Passed No Issue
30 _deleteDefaultRoyalty internal Passed No Issue
31 _setTokenRoyalty internal Passed No Issue

32 _resetTokenRoyalty internal Passed No Issue
33 initialize write Anyone can initialize

contract
Refer audit

findings
34 addTier external access only Owner No Issue
35 updateTier external access only Owner No Issue
36 removeTier external access only Owner No Issue
37 setUsdcToken write access only Owner No Issue
38 _baseURI internal Passed No Issue
39 setURI external access only Owner No Issue
40 tokenURI read Passed No Issue
41 noBlacklist modifier Passed No Issue
42 setBlacklist write access only Owner No Issue
43 setWhitelist write access only Owner No Issue
44 isAddressWhitelisted read Passed No Issue
45 mintNode write Passed No Issue
46 mint write Passed No Issue
47 mintTo write access only Owner No Issue
48 setMintReceiver external access only Owner No Issue
49 removeFromArrayString internal Passed No Issue
50 removeFromArray internal Unused internal

function
Refer audit

findings
51 nodeTiersCount external Passed No Issue
52 supportsInterface read Passed No Issue
53 setRoyalities external Function input

parameters lack of
check

Refer audit
findings

54 setNftTier external Function input
parameters lack of

check

Refer audit
findings

55 withdrawUSDC external access only Owner No Issue

NodeManager.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 __ReentrancyGuard_init_

unchained
internal access only

Initializing
No Issue

3 nonReentrant modifier Passed No Issue
4 _nonReentrantBefore write Passed No Issue
5 _nonReentrantAfter write Passed No Issue
6 __Ownable_init internal access only

Initializing
No Issue

7 __Ownable_init_unchain
ed

internal access only
Initializing

No Issue

8 onlyOwner modifier Passed No Issue
9 owner read Passed No Issue

10 _checkOwner internal Passed No Issue
11 renounceOwnership write access only Owner No Issue
12 transferOwnership write access only Owner No Issue
13 _transferOwnership internal Passed No Issue
14 initialize write Anyone can initialize

contract
Refer audit

findings
15 setRewardAddress write access only Owner No Issue
16 setUsdcToken write access only Owner No Issue
17 setNFT write access only Owner No Issue
18 noBlacklist modifier Passed No Issue
19 setBlacklist write access only Owner No Issue
20 stakeNode external Passed No Issue
21 unstakeNode external Passed No Issue
22 getNodesCountStaked read Passed No Issue
23 getNodesStaked read Passed No Issue
24 getDailyReward read Passed No Issue
25 getAvailableReward read Passed No Issue
26 getTierReward internal Passed No Issue
27 claimAllRewards write Passed No Issue
28 setTaxAccount external access only Owner No Issue
29 getTax external access only Owner No Issue
30 removeFromArray internal Passed No Issue

RoyaltiesAddon.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 tokenURI read Passed No Issue
3 _setTokenURI internal Passed No Issue
4 _burn internal Passed No Issue
5 _setRoyaltiesAddress internal Passed No Issue
6 _beforeTokenTransfer internal Passed No Issue

Royalties.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _setOwner write Passed No Issue
7 setTokenFeesAddress external access only Owner No Issue

8 setCreatorAddress external access only Owner No Issue
9 setCollectionSize external access only Owner No Issue

10 setCreatorRoyalties external access only Owner No Issue
11 setCommunityRoyalties external access only Owner No Issue
12 getTotalRoyalties read Passed No Issue
13 getRoyalties read Passed No Issue
14 getTotalCollected read Passed No Issue
15 getCreatorBalance read Passed No Issue
16 getTokenTotalRoyalties read Passed No Issue
17 getTokenBalance read Passed No Issue
18 getTokensBalance read Passed No Issue
19 getAddressClaims read Passed No Issue
20 claimCommunity write Passed No Issue
21 claimCommunityBatch external Infinite loops

possibility
Refer audit

findings
22 claimCreator external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity
No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low
(1) Function input parameters lack of check: AllianceNFT.sol

Some functions require validation before execution.

Functions are:

● setNftTier() - tier variable not check - if tier exist or not

● setRoyalities()

Resolution: We suggest using validation like for numerical variables that should be

greater than 0 and for address type check variables that are not address(0).

(2) Infinite loops possibility: Royalties.sol

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

Very Low / Informational / Best practices:

(1) Unused variables: NodeManager.sol

There are some variables defined but not used anywhere.

● nodeCount

● _baseTokenURI

Resolution: Remove unused variables from the code.

(2) Anyone can initialize contract:

AllianceNFT.sol

NodeManager.sol

initialize() function is public, so anyone can execute this function, And make the contract

creator own itself.

Resolution: The owner has to make sure to initialize the contract after deploying.

(3) Unused internal function: AllianceNFT.sol

There are functions defined but not used in the functionality.

● removeFromArray()

Resolution: We suggest removing unused internal functions from code.

(4) SafeMathUpgradeable Library: AllianceNFT.sol

SafeMathUpgradeable Library is used in this contract code, but the compiler version is

greater than or equal to 0.8.0, Then it will be not required to use, solidity automatically

handles overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

(5) Spelling mistakes: Royalties.sol

There are some places where there are spelling mistakes:

Comments before function name getAddressClaims() -

/// @dev get address tot claims

- tot word should be total

Resolution: We suggest correcting spelling mistakes.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● addTier: AllianceNFT owner can add new tier.

● updateTier: AllianceNFT owner can update tier.

● removeTier: AllianceNFT owner can remove tier.

● setUsdcToken: AllianceNFT owner can set USDC token.

● setURI: AllianceNFT owner can set the URI.

● setBlacklist: AllianceNFT owner can set blacklist address.

● setWhitelist: AllianceNFT owner can set whitelist address.

● mintTo: AllianceNFT owner can mint token from address.

● setMintReceiver: AllianceNFT owner can set the mint receiver address.

● setRoyalities: AllianceNFT owner can set royalties receiver address.

● setNftTier: AllianceNFT owner can set NFT Tier.

● withdrawUSDC: AllianceNFT owner can withdraw USDC address.

● setRewardAddress: NodeManager owner can set reward address.

● setUsdcToken: NodeManager owner can set USDC token address.

● setNFT: NodeManager owner can set NFT address.

● setBlacklist: NodeManager owner can set blacklist address.

● setTaxAccount: NodeManager owner can set tax account address.

● getTax: NodeManager owner can get tax.

● setTokenFeesAddress: Royalties owner can set royalties address.

● setCreatorAddress: Royalties owner can set the creator address to be another

contract.

● setCollectionSize: Royalties owner can set only smaller collection size, can't

increase the size.

● setCreatorRoyalties: Royalties owner can set creator royalties values.

● setCommunityRoyalties: Royalties owner can set community royalties value.

● claimCreator: Royalties owner can claim creator royalties.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We have observed 2 low severity issues and some

informational issues in the smart contracts. So, the smart contracts are ready for the
mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Alliance NFT Protocol

AllianceNFT Diagram

NodeManager Diagram

RoyaltiesAddon Diagram

Royalties Diagram

Slither Results Log

Slither log >> AllianceNFT.sol

Slither log >> Royalties.sol

Slither log >> NodeManager.sol

Slither log >> RoyaltiesAddon.sol

Solidity Static Analysis

AllianceNFT.so

NodeManager.sol

RoyaltiesAddon.sol

Royalties.sol

Solhint Linter

AllianceNFT.sol

AllianceNFT.sol:1778:18: Error: Parse error: missing ';' at '{'
AllianceNFT.sol:1786:18: Error: Parse error: missing ';' at '{'
AllianceNFT.sol:1793:18: Error: Parse error: missing ';' at '{'
AllianceNFT.sol:1802:18: Error: Parse error: missing ';' at '{'
AllianceNFT.sol:1809:18: Error: Parse error: missing ';' at '{'
AllianceNFT.sol:1840:18: Error: Parse error: missing ';' at '{'
AllianceNFT.sol:1851:18: Error: Parse error: missing ';' at '{'
AllianceNFT.sol:1862:18: Error: Parse error: missing ';' at '{'

NodeManager.sol

NodeManager.sol:1760:18: Error: Parse error: missing ';' at '{'
NodeManager.sol:1768:18: Error: Parse error: missing ';' at '{'
NodeManager.sol:1775:18: Error: Parse error: missing ';' at '{'
NodeManager.sol:1784:18: Error: Parse error: missing ';' at '{'
NodeManager.sol:1791:18: Error: Parse error: missing ';' at '{'
NodeManager.sol:1822:18: Error: Parse error: missing ';' at '{'
NodeManager.sol:1833:18: Error: Parse error: missing ';' at '{'
NodeManager.sol:1844:18: Error: Parse error: missing ';' at '{'

RoyaltiesAddon.sol

RoyaltiesAddon.sol:2:1: Error: Compiler version ^0.8.0 does not
satisfy the r semver requirement
RoyaltiesAddon.sol:232:13: Error: Avoid using inline assembly. It is
acceptable only in rare cases
RoyaltiesAddon.sol:538:5: Error: Explicitly mark visibility in
function (Set ignoreConstructors to true if using solidity >=0.7.0)
RoyaltiesAddon.sol:903:21: Error: Avoid using inline assembly. It is
acceptable only in rare cases
RoyaltiesAddon.sol:931:24: Error: Code contains empty blocks
RoyaltiesAddon.sol:948:24: Error: Code contains empty blocks

Royalties.sol

Royalties.sol:2:1: Error: Compiler version ^0.8.0 does not satisfy
the r semver requirement
Royalties.sol:21:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
Royalties.sol:85:5: Error: Explicitly mark visibility in function

(Set ignoreConstructors to true if using solidity >=0.7.0)
Royalties.sol:110:51: Error: Use double quotes for string
literalsRoyalties.sol:192:17: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
Royalties.sol:211:9: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

