
Project: Undoomed Protocol
Website: https://undoomed.space/
Platform: Astar Network
Language: Solidity
Date: April 30th, 2022

https://undoomed.space/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....………………………………………………………………….8

Technical Quick Stats …..……………………………………………………………………… 9

Code Quality ……………………………………………………………………………………. 10

Documentation ………………………………………………………………………………….. 10

Use of Dependencies …………………………………………………………………………… 10

AS-IS overview ………………………………………………………………………………….. 11

Severity Definitions ……………………………………………………………………………... 19

Audit Findings …………………………………………………………………………………… 20

Conclusion ………………………………………………………………………………………. 24

Our Methodology ………………………………………………………………………………... 25

Disclaimers ………………………………………………………………………………………. 27

Appendix

● Code Flow Diagram ……………………………………………………………………... 28

● Slither Results Log ………………………………………………………………………. 36

● Solidity static analysis ….……………………………………………………………….. 40

● Solhint Linter …………………………………………………………………….……….. 50

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Undoomed to perform the Security audit of the
Undoomed Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 30th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The Undoomed Contracts have functions like _setInitializedVersion, getAdventures,

adventure, redeemCoin, mint, addMinter, _exists, recycle, tokenByIndex, etc. The

Undoomed Initializable standard smart contracts from the OpenZeppelin library. These

OpenZeppelin contracts are considered community-audited and time-tested, and hence

are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Undoomed Protocol Smart Contracts

Platform Astar / Solidity

File 1 Adventure.sol

File 1 MD5 Hash 83D6C474603466B15CF525BF6B77BBE0

File 2 Building.sol

File 2 MD5 Hash B34ED2C79065D047A296E170E477A044

File 3 CroesusToken.sol

File 3 MD5 Hash B959509CB6B52D240F535E404B03C902

File 4 CrystalToken.sol

File 4 MD5 Hash E550AFEF2D1808D9C7570BD0A6FF3CE6

File 5 ERC721.sol

File 5 MD5 Hash BDEBC24FE78668F84429B655540F88C4

File 6 Hero.sol

File 6 MD5 Hash 89B3C762E7E970D6D4F77CC163F70085

File 7 Item.sol

File 7 MD5 Hash 82FB9B34BDD5D161C3373AED81157616

File 8 heroCoupon.sol

File 8 MD5 Hash 1C198530A9E0786534A093E413B320E7

Audit Date April 30th,2022

https://github.com/undoomedgamefi123/undoomed-contracts/blob/main/contracts/adventure.sol
https://github.com/undoomedgamefi123/undoomed-contracts/blob/main/contracts/building.sol
https://github.com/undoomedgamefi123/undoomed-contracts/blob/main/contracts/croesusToken.sol
https://github.com/undoomedgamefi123/undoomed-contracts/blob/main/contracts/crystalToken.sol
https://github.com/undoomedgamefi123/undoomed-contracts/blob/main/contracts/erc721.sol
https://github.com/undoomedgamefi123/undoomed-contracts/blob/main/contracts/hero.sol
https://github.com/undoomedgamefi123/undoomed-contracts/blob/main/contracts/item.sol
https://github.com/undoomedgamefi123/undoomed-contracts/blob/main/contracts/heroCoupon.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 Adventure.sol
● USDT Decimals:6

● Maximum Points: 1 Billion

● Adventure has functions like:

getSummonersTotalPoints,

getAdventures, etc.

YES, This is valid.

File 2 Building.sol
● DAY: 1 days

● Half Award Duration:15

● Building has functions like: getPledgeInfo,

updateWallet, etc.

YES, This is valid.

File 3 CroesusToken.sol
● Name: CROESUS

● Symbol: COSS

● Decimals: 18

● Maximum Supply: 21 Million

YES, This is valid.

File 4 CrystalToken.sol
● Name: CRYSTAL-UNDOOMED

● Symbol: CRYSTAL

● Decimals: 18

YES, This is valid.

File 5 ERC721.sol
● ERC721 has functions like: balanceOf,

ownerOf, approve, getApproved, etc.

YES, This is valid.

File 6 Hero.sol
● Name: Undoomed-Hero

● Symbol: UDH

● USDT Decimals: 6

YES, This is valid.

File 7 Item.sol
● Name: Undoomed-Item

● Symbol: UDI

● USDT Decimals: 6

YES, This is valid.

File 8 HeroCoupon.sol
● Name: HeroCoupon

● Symbol: HeroCoupon

● Maximum Supply: 20,000

YES, This is valid.

`Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 8 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Undoomed Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Undoomed Protocol.

The Undoomed team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an Undoomed Protocol smart contract code in the form of a github

weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://undoomed.space/ which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://undoomed.space/

AS-IS overview

Adventure.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 _setInitializedVersion write Passed No Issue
7 initialize write Passed No Issue
8 updateWallet external access only Owner No Issue
9 getSummonersTotalPoint

s
external Passed No Issue

10 getAdventures external Passed No Issue
11 getSummonersLastAdve

nture
external Passed No Issue

12 adventure external Infinite loops
possibility

Refer Audit
Findings

13 _armyLevelById internal Passed No Issue
14 updateAdventureResult external Passed No Issue
15 _openItem write Passed No Issue
16 _updateRankingList write Passed No Issue
17 getDailyRankingList external Passed No Issue
18 getWeeklyRankingList external Passed No Issue
19 publishDailyRanking external Passed No Issue
20 publishWeeklyRanking external Passed No Issue
21 recieveDailyRankingUsdt

Award
external Passed No Issue

22 recieveWeeklyRankingUs
dtAward

external Passed No Issue

23 _arryaPush write Passed No Issue
24 queryAwardCroesus read Passed No Issue
25 getAwardCroesusHistory external Passed No Issue
26 _calcPageInfo write Passed No Issue
27 recieveCroesus external Passed No Issue
28 addCoresusMinter external access only Owner No Issue
29 updateItemAddress external access only Owner No Issue
30 removeCoresusMinter external access only Owner No Issue
31 addRankingPublisher external access only Owner No Issue
32 removeRankingPublisher external access only Owner No Issue
33 mintCroesus external Passed No Issue
34 _isCoresusMinter read Passed No Issue
35 _isRankingPublisher read Passed No Issue

36 addAllowedUpdateAdven
tureAddresses

external access only Owner No Issue

37 removeAllowedUpdateAd
ventureAddresses

external access only Owner No Issue

38 _isCallFromAllowedUpda
teAdventureAddresses

read Passed No Issue

39 _isApprovedOrOwnerOfS
ummoner

read Passed No Issue

40 _arrayContains write Passed No Issue
41 _addressesContains write Passed No Issue
42 _addressArrayDelete internal Passed No Issue
43 _getTimestampDay write Passed No Issue
44 _getTimestampWeek write Passed No Issue
45 onlyOwner modifier Passed No Issue

Building.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 _setInitializedVersion write Passed No Issue
7 initialize write Passed No Issue
8 getPledgeInfo external Passed No Issue
9 updateBuildingConfigAddr

ess
external access only Owner No Issue

10 updateWallet external access only Owner No Issue
11 init external Passed No Issue
12 create external Passed No Issue
13 _consumeCroesus write Passed No Issue
14 getArmyBuildingProduceR

ateAndStorageLimit
external Passed No Issue

15 _calcArmyBuildingProduc
eRateAndStorageLimit

read Passed No Issue

16 redeemCoin write Passed No Issue
17 multiRedeemCoin external Passed No Issue
18 multiReceiveCrystal external Passed No Issue
19 _prepareRecieveCrystal write Passed No Issue
20 changePledgeCoin write Passed No Issue
21 multiChangePledgeCoin external Passed No Issue
22 _calculateCurrentAward internal Passed No Issue
23 getCurrentAwards read Passed No Issue
24 getCurrentAward read Passed No Issue
25 _calculateAwardBaseRate internal Passed No Issue

26 _getPledgeRate internal Passed No Issue
27 pledgeHero write Passed No Issue
28 multiPledgeHero external Passed No Issue
29 redeemHero write Passed No Issue
30 multiRedeemHero external Passed No Issue
31 getOwnedBuildings read Passed No Issue
32 getOwnedBuildingCount external Passed No Issue
33 _isApprovedOrOwnerOfSu

mmoner
internal Passed No Issue

34 _arrayDelete internal Passed No Issue
35 _arrayContains write Passed No Issue
36 onlyOwner modifier Passed No Issue

CroesusToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _mint internal Passed No Issue
7 _transfer internal Passed No Issue
8 delegate external Passed No Issue
9 delegateBySig external Passed No Issue

10 getCurrentVotes external Passed No Issue
11 getPriorVotes external Passed No Issue
12 _delegate internal Passed No Issue
13 _moveDelegates internal Passed No Issue
14 _writeCheckpoint internal Passed No Issue
15 safe32 internal Passed No Issue
16 getChainId internal Passed No Issue
17 mint write access only Minter No Issue
18 addMinter write access only Owner No Issue
19 delMinter write access only Owner No Issue
20 getMinterLength read Passed No Issue
21 isMinter read Passed No Issue
22 getMinter read access only Owner No Issue
23 onlyMinter modifier Passed No Issue

CrystalToken.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _mint internal Passed No Issue
7 _transfer internal Passed No Issue
8 delegate external Passed No Issue
9 delegateBySig external Passed No Issue

10 getCurrentVotes external Passed No Issue
11 getPriorVotes external Passed No Issue
12 _delegate internal Passed No Issue
13 _moveDelegates internal Passed No Issue
14 _writeCheckpoint internal Passed No Issue
15 safe32 internal Passed No Issue
16 getChainId internal Passed No Issue
17 mint write access only Minter No Issue
18 addMinter write access only Owner No Issue
19 delMinter write access only Owner No Issue
20 getMinterLength read Passed No Issue
21 isMinter read Passed No Issue
22 getMinter read access only Owner No Issue
23 onlyMinter modifier Passed No Issue

ERC721.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 balanceOf read Passed No Issue
3 ownerOf read Passed No Issue
4 _baseURI internal Passed No Issue
5 approve write Passed No Issue
6 getApproved read Passed No Issue
7 setApprovalForAll write Passed No Issue
8 _isContract internal Passed No Issue
9 isApprovedForAll read Passed No Issue

10 transferFrom write Passed No Issue
11 safeTransferFrom write Passed No Issue
12 _safeTransfer internal Passed No Issue
13 _exists internal Passed No Issue
14 _isApprovedOrOwner internal Passed No Issue

15 _safeMint internal Passed No Issue
16 _safeMint internal Passed No Issue
17 _mint internal Passed No Issue
18 _burn internal Passed No Issue
19 _transfer internal Passed No Issue
20 _approve internal Passed No Issue
21 _checkOnERC721Receiv

ed
write Passed No Issue

22 _beforeTokenTransfer internal Passed No Issue

Hero.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 _setInitializedVersion write Passed No Issue
7 getOwnerdTokens read Passed No Issue
8 getOwnedTokensByAddr

ess
read Passed No Issue

9 tokenOfOwnerByIndex read Passed No Issue
10 totalSupply read Passed No Issue
11 tokenByIndex read Passed No Issue
12 _beforeTokenTransfer internal Passed No Issue
13 _addTokenToOwnerEnu

meration
write Passed No Issue

14 _addTokenToAllTokensEn
umeration

write Passed No Issue

15 _removeTokenFromOwn
erEnumeration

write Passed No Issue

16 _removeTokenFromAllTo
kensEnumeration

write Passed No Issue

17 supportsInterface external Passed No Issue
18 initialize write Passed No Issue
19 mergeSummoners external Passed No Issue
20 setSummonerName external Passed No Issue
21 recycle external Passed No Issue
22 isWorking read Passed No Issue
23 level_up external Passed No Issue
24 _consumeCroesus write Passed No Issue
25 summoners external Passed No Issue
26 abilityScores external Passed No Issue
27 summon external Passed No Issue
28 summonByCoupon external Passed No Issue

29 _summonRoll write Passed No Issue
30 _summon write Passed No Issue
31 _roll write Passed No Issue
32 _getInitAbility write Passed No Issue
33 _randomBetween write Passed No Issue
34 setPledged external Passed No Issue
35 setAdventuring external Passed No Issue
36 addAllowedPledgeFromA

ddress
external access only Owner No Issue

37 removeAllowedPledgeFro
mAddress

external access only Owner No Issue

38 updateWallet external access only Owner No Issue
39 _isCallFromAllowedPledg

eFromAddresses
write Passed No Issue

40 addAllowedUpdateAdven
turingAddresses

external access only Owner No Issue

41 removeAllowedUpdateAd
venturingAddresses

external access only Owner No Issue

42 _isCallFromAllowedUpda
teAdventuringAddresses

read Passed No Issue

43 _random write Passed No Issue
44 _beforeTokenTransfer internal Passed No Issue
45 setItemAddress external access only Owner No Issue
46 _addressArrayDelete internal Passed No Issue
47 _addressesContains write Passed No Issue
48 tokenURI external Passed No Issue
49 toBytes internal Passed No Issue
50 onlyOwner modifier Passed No Issue

Item.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initializer modifier Passed No Issue
3 reinitializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _disableInitializers internal Passed No Issue
6 _setInitializedVersion write Passed No Issue
7 getOwnerdTokens read Passed No Issue
8 getOwnedTokensByAddr

ess
read Passed No Issue

9 tokenOfOwnerByIndex read Passed No Issue
10 totalSupply read Passed No Issue
11 tokenByIndex read Passed No Issue
12 _beforeTokenTransfer internal Passed No Issue

13 _addTokenToOwnerEnu
meration

write Passed No Issue

14 _addTokenToAllTokensEn
umeration

write Passed No Issue

15 _removeTokenFromOwn
erEnumeration

write Passed No Issue

16 _removeTokenFromAllTo
kensEnumeration

write Passed No Issue

17 supportsInterface external Passed No Issue
18 initialize write Passed No Issue
19 mergeItems external Passed No Issue
20 _consumeCroesus write Passed No Issue
21 updateCroesus external access only Owner No Issue
22 updateWallet external access only Owner No Issue
23 open external Passed No Issue
24 _open write Passed No Issue
25 _mintItem write Passed No Issue
26 openItemRandom write Passed No Issue
27 recycle external Passed No Issue
28 items external Passed No Issue
29 summonersWithItems read Passed No Issue
30 getSummonersWeardIte

ms
read Passed No Issue

31 getWearingItems read Passed No Issue
32 isUsing read Passed No Issue
33 _removeItem write Passed No Issue
34 _wearItem write Passed No Issue
35 wearItems external Infinite loops

possibility
Refer Audit

Findings
36 removeAllExpiredItems external Passed No Issue
37 clearWearingItems external Passed No Issue
38 _clearWearingItems write Passed No Issue
39 addAllowedOpenItemAdd

ress
external access only Owner No Issue

40 removeAllowedOpenItem
Address

external access only Owner No Issue

41 _isCallFromAllowedOpen
ItemAddresses

read Passed No Issue

42 _arrayFirstZeroIndex write Passed No Issue
43 _arrayContains write Passed No Issue
44 _roll write Passed No Issue
45 _beforeTokenTransfer internal Passed No Issue
46 _isApprovedOrOwnerOfS

ummoner
internal Passed No Issue

47 _isApprovedOrOwnerOfIt
em

internal Passed No Issue

48 _random write Passed No Issue
49 _addressesContains write Passed No Issue

50 _addressArrayDelete internal Passed No Issue
51 tokenURI read Passed No Issue
52 toBytes internal Passed No Issue
53 onlyOwner modifier Passed No Issue

HeroCoupon.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 mint write access only Minter No Issue
7 transfer write access only Owner No Issue
8 transferFrom write access only Hero

Contract
No Issue

9 setHeroAddress write access only Owner No Issue
10 addMinter write access only Owner No Issue
11 delMinter write access only Owner No Issue
12 getMinterLength read Passed No Issue
13 isMinter read Passed No Issue
14 getMinter read access only Owner No Issue
15 onlyMinter modifier Passed No Issue
16 onlyHeroContract modifier Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Infinite loops possibility:

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

Adventure.sol
● adventure() - _armys.length

Item.sol
● wearItems() - _excluded.length.

Very Low / Informational / Best practices:

(1) Unused struct: Building.sol

structs are defined but not used in code:

1. EconomyRecord

2. BuildingPledgeSummoners

Resolution: We suggest removing unused struct.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● updateCroesus: Item owner can update croesus address.

● updateWallet: Item owner can update address.

● addAllowedOpenItemAddress: Item owner can add allowed open item address.

● removeAllowedOpenItemAddress: Item owner can remove allowed open item

address.

● updateWallet: Adventure owner can update address.

● addCoresusMinter: Adventure owner can add coresus minter address.

● updateItemAddress: Adventure owner can update item address.

● removeCoresusMinter: Adventure owner can remove coresus minter address.

● addRankingPublisher: Adventure owner can add ranking publisher address.

● removeRankingPublisher: Adventure owner can remove ranking publisher address.

● addAllowedUpdateAdventureAddresses: Adventure owner can add allowed update

adventure addresses.

● removeAllowedUpdateAdventureAddresses: Adventure owners can remove allowed

update adventure addresses.

● updateBuildingConfigAddress: Building Owner can update config address.

● updateWallet: Building Owner can update wallet address.

● addMinter: CroesusToken owner can add minter address.

● delMinter: CroesusToken owner can remove minter address.

● getMinter: CroesusToken owner can get minter address.

● addMinter: CrystalToken owner can add minter address.

● delMinter: CrystalToken owner can remove minter address.

● getMinter: CrystalToken owner can get minter address.

● addAllowedPledgeFromAddress: Hero owner can add allowed pledge from

address.

● removeAllowedPledgeFromAddress: Hero owner can remove allowed pledge from

address.

● updateWallet: Hero owner can update wallet address.

● addAllowedUpdateAdventuringAddresses: Hero owner can add allowed update

adventure addresses.

● removeAllowedUpdateAdventuringAddresses: Hero owner can remove allowed

update adventure addresses.

● setItemAddress: Hero owner can set item address.

● getMinter: HeroCoupon owner can get minter address.

● delMinter: HeroCoupon owner can remove minter address.

● addMinter: HeroCoupon owner can add minter address.

● setHeroAddress: HeroCoupon owner can set hero address.

● transfer: HeroCoupon owner can transfer amount.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We had observed some issues in the smart contracts, but

they were resolved in the revised smart contract code. So, the smart contracts are
ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Undoomed Protocol

Adventure Diagram

Building Diagram

CroesusToken Diagram

CrystalToken Diagram

ERC721 Diagram

Hero Diagram

Item Diagram

HeroCoupon Diagram

Slither Results Log

Slither log >> Adventure.sol

Slither log >> Building.sol

Slither log >> CroesusToken.sol

Slither log >> CrystalToken.sol

Slither log >> ERC721.sol

Slither log >> Hero.sol

Slither log >> Item.sol

Slither log >> HeroCoupon.sol

Solidity Static Analysis

Adventure.sol

Building.sol

CroesusToken.sol

CrystalToken.sol

ERC721.sol

Hero.sol

Item.sol

Adventure.sol

Solhint Linter

Adventure.sol

Adventure.sol:2:1: Error: Compiler version ^0.8.4 does not satisfy
the r semver requirement
Adventure.sol:275:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Adventure.sol:549:21: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Adventure.sol:577:24: Error: Code contains empty blocks
Adventure.sol:625:43: Error: Avoid to use tx.origin
Adventure.sol:627:69: Error: Avoid to use tx.origin
Adventure.sol:871:28: Error: Avoid using low level calls.
Adventure.sol:1021:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Adventure.sol:1510:5: Error: Function name must be in mixedCase
Adventure.sol:1514:5: Error: Function name must be in mixedCase

Building.sol

Building.sol:1517:5: Error: Function name must be in mixedCase
Building.sol:1878:5: Error: Function name must be in mixedCase
Building.sol:1884:1: Error: Contract has 19 states declarations but
allowed no more than 15
Building.sol:1894:28: Error: Constant name must be in capitalized
SNAKE_CASE
Building.sol:1895:28: Error: Constant name must be in capitalized
SNAKE_CASE
Building.sol:1896:5: Error: Explicitly mark visibility of state
Building.sol:1896:20: Error: Constant name must be in capitalized
SNAKE_CASE
Building.sol:1910:5: Error: Explicitly mark visibility of state
Building.sol:1930:5: Error: Event name must be in CamelCase
Building.sol:2237:38: Error: Avoid to make time-based decisions in
your business logic
Building.sol:2654:1: Error: Contract has 23 states declarations but
allowed no more than 15
Building.sol:2666:20: Error: Variable name must be in mixedCase
Building.sol:2667:28: Error: Constant name must be in capitalized
SNAKE_CASE
Building.sol:2668:28: Error: Constant name must be in capitalized
SNAKE_CASE
Building.sol:2669:5: Error: Explicitly mark visibility of state
Building.sol:2669:22: Error: Constant name must be in capitalized
SNAKE_CASE
Building.sol:2685:5: Error: Event name must be in CamelCase
Building.sol:2803:9: Error: Variable name must be in
mixedCaseBuilding.sol:3216:9: Error: Avoid to use inline assembly. It
is acceptable only in rare cases
Building.sol:3222:26: Error: Code contains empty blocks

Building.sol:3374:5: Error: Function name must be in mixedCase
Building.sol:3527:1: Error: Contract has 19 states declarations but
allowed no more than 15
Building.sol:3547:5: Error: Explicitly mark visibility of state
Building.sol:3548:5: Error: Explicitly mark visibility of state
Building.sol:3548:22: Error: Constant name must be in capitalized
SNAKE_CASE
Building.sol:3737:26: Error: Avoid to make time-based decisions in
your business logic
Building.sol:3840:55: Error: Avoid to use tx.origin
Building.sol:3846:53: Error: Avoid to make time-based decisions in
your business logic
Building.sol:3939:59: Error: Avoid to use tx.origin
Building.sol:3946:57: Error: Avoid to make time-based decisions in
your business logic
Building.sol:3989:32: Error: Avoid to make time-based decisions in
your business logic
Building.sol:4055:38: Error: Avoid to use tx.origin
Building.sol:4092:46: Error: Avoid to make time-based decisions in
your business logic
Building.sol:4126:26: Error: Avoid to use tx.origin
Building.sol:4129:56: Error: Avoid to use tx.origin

CroesusToken.sol

CroesusToken.sol:6:1: Error: Compiler version ^0.6.12 does not
satisfy the r semver requirement
CroesusToken.sol:941:24: Error: Code contains empty blocks
CroesusToken.sol:1361:17: Error: Avoid to make time-based decisions
in your business logic
CroesusToken.sol:1500:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
CroesusToken.sol:1525:30: Error: Constant name must be in capitalized
SNAKE_CASE
CroesusToken.sol:1527:51: Error: Code contains empty blocks

CrystalToken.sol

CrystalToken.sol:6:1: Error: Compiler version ^0.6.12 does not
satisfy the r semver requirement
CrystalToken.sol:786:96: Error: Code contains empty blocks
CrystalToken.sol:1157:17: Error: Avoid to make time-based decisions
in your business logic
CrystalToken.sol:1279:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases
CrystalToken.sol:1295:30: Error: Constant name must be in capitalized
SNAKE_CASE
CrystalToken.sol:1296:62: Error: Code contains empty blocks

ERC721.sol

ERC721.sol:2:1: Error: Compiler version ^0.8.4 does not satisfy the r
semver requirement
ERC721.sol:180:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
ERC721.sol:454:21: Error: Avoid using inline assembly. It is
acceptable only in rare cases
ERC721.sol:482:24: Error: Code contains empty blocks
ERC721.sol:530:43: Error: Avoid to use tx.origin
ERC721.sol:532:69: Error: Avoid to use tx.origin

Hero.sol

Hero.sol:275:9: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Hero.sol:549:21: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Hero.sol:577:24: Error: Code contains empty blocks
Hero.sol:625:43: Error: Avoid to use tx.origin
Hero.sol:627:69: Error: Avoid to use tx.origin
Hero.sol:871:28: Error: Avoid using low level calls.
Hero.sol:1021:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Hero.sol:1510:5: Error: Function name must be in mixedCase

Item.sol

Item.sol:2:1: Error: Compiler version ^0.8.4 does not satisfy the r
semver requirement
Item.sol:275:9: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Item.sol:549:21: Error: Avoid using inline assembly. It is acceptable
only in rare cases
Item.sol:577:24: Error: Code contains empty blocks
Item.sol:616:43: Error: Avoid to use tx.origin
Item.sol:618:69: Error: Avoid to use tx.origin
Item.sol:862:28: Error: Avoid using low level calls.
Item.sol:990:51: Error: Avoid using low level calls.
Item.sol:1012:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases
Item.sol:1603:5: Error: Function name must be in
mixedCaseItem.sol:1615:5: Error: Function name must be in mixedCase
Item.sol:1619:5: Error: Function name must be in mixedCase

HeroCoupon.sol

HeroCoupon.sol:6:1: Error: Compiler version ^0.6.12 does not satisfy

the r semver requirement
HeroCoupon.sol:858:24: Error: Code contains empty blocks
HeroCoupon.sol:1278:17: Error: Avoid to make time-based decisions in
your business logic
HeroCoupon.sol:1417:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
HeroCoupon.sol:1443:30: Error: Constant name must be in capitalized
SNAKE_CASE
HeroCoupon.sol:1445:60: Error: Code contains empty blocks

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

