

SMART CONTRACT CODE REVIEW AND
SECURITY ANALYSIS REPORT

For

Match & StakingPortal
 (Order #14092020)

Prepared By​: Chandan Kumar ​
Prepared For​:​​ Staking Portal
Prepared on​: 12/09/2020
audit@etherauthority.io

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Very low severity vulnerabilities found in the contract

9. Gas Optimization Discussion

10. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

EtherAuthority Limited (www.EtherAuthority.io)

THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION

ABOUT IT SYSTEMS AND INTELLECTUAL PROPERTY OF THE

CUSTOMER AS WELL AS INFORMATION ABOUT POTENTIAL

VULNERABILITIES AND METHODS OF THEIR EXPLOITATION.

THE REPORT CONTAINING CONFIDENTIAL INFORMATION CAN

BE USED INTERNALLY BY THE CUSTOMER OR IT CAN BE

DISCLOSED PUBLICLY AFTER ALL VULNERABILITIES ARE FIXED

- UPON DECISION OF CUSTOMER.

2. Overview of the audit

The project has one smart contract file and two other dependent contracts
which are already in production:

StakePortalV3.sol 533 lines

It contains approx ​533 lines of Solidity code. All functions and state variables are
properly commented, the latest stable version (0.5.0) with perfectly
implemented code blocks, with properly assigned visibility of functions and
consistent proper variable tracking flow makes this contract absolutely perfect.
But apart from this, ​there is some logical syntax error and potential damage
which makes this contract not to fit for production, but those can be
altered/changes/corrected easily to make it fit for production. Else code is also
robust and fully protected towards many popular attack possibilities which is a
good sign of code approach.

Apart from errors (must solve before deploy),​ and warnings these contract are

● Contract compiled successfully up to version 0.7.0
● Perfect administrative control
● Optimized for GAS.
● Good use of safe math.
● Staking triggered by an external contract well written.
● Unstaking and release with lock period defined well
● Average reward method used , good for one call withdrawal but little

deviations may be felt over time, but used by many in production.

The audit was performed by two senior solidity auditors at EtherAuthority. The
team has extensive work experience in developing and auditing the smart

contracts.

EtherAuthority Limited (www.EtherAuthority.io)

This audit procedure also included the use of automated software to further scan
of the code to identify potential issues:

For example:

https://securify.chainsecurity.com/report/313d1422e6d833c45bf4ec48ee23a80
61eda2776766d9ee8c063f83709a700a6

Here all mentioned reports of tools are either mentioned already or not such
serious to pay attention to.

And on​ ​https://tool.smartdec.net/scan/b7bcc64364ef4f02b384a9fe3c7dc843
also no such serious error found in test

Implicit visibility level​https://mythx.io​​ ​tool provided as remix.ethereum.org
plugin

Above are the only few points raised by the automated tools and taken into
consideration, and these are not such a problem actually for ex. Loops are
limited by iteration, safe math protects some attacks, and address zero is
checked to move into the processing part of the function so All are OK.

EtherAuthority Limited (www.EtherAuthority.io)

https://tool.smartdec.net/scan/b7bcc64364ef4f02b384a9fe3c7dc843
https://mythx.io/

Quick Stats:

EtherAuthority Limited (www.EtherAuthority.io)

EtherAuthority Limited (www.EtherAuthority.io)

Main Category Subcategory Result

Contract Solidity version not specified Passed
Programming

Solidity version is old Passed

 Integer overflow/underflow Passed

 Function input parameters lack of check Passed

 Function input parameters check bypass Passed

 Function access control lacks management Passed

 Critical operation lacks event log Passed

 Human/contract checks bypass Moderated

 Random number generation/use vulnerability N/A

 Fallback function misuse Passed

 Race condition Passed

 Logical vulnerability Passed

 Other programming issues Moderated

Code Visibility not explicitly declared Passed
Specification

Var. storage location not explicitly declared Passed

 Use keywords/functions to be deprecated Passed

 Other code specification issues Passed

Gas Assert() misuse Passed

Optimization
Burn Lower limit for Burn N/A

Overall Audit Result: ​ ​Passed ​(after rectifying observed issues)

Point of Marks:

According to the initial and revised assessment, Customer`s smart contract
is ​Well-secured​.

 You are here

Main Details of findings are following:

Modifier “onlyTokenContract” defined, but no where used, instead local require
defined. Either this modifier should be removed or local required related to this
should be replaced by this modifier.

Address(0) check needed in “tokenCallback” function. To avoid mis-lead of
dependent contracts (there also address(0) not checked) which is in
production.

EtherAuthority Limited (www.EtherAuthority.io)

 High consumption ‘for/while’ loop Passed

 High consumption ‘storage’ storage Passed

 “Out of Gas” Attack Moderated

Business Risk The maximum limit for mintage not set N/A

 “Short Address” Attack Passed

 “Double Spend” Attack Passed

“_unstakeAmount” parameter should be checked for “0” in “Unstake” function.

While relocating funds (where transfer is used) variable reset should be before
transfer to avoid any re-entrancy attack.
For ex “_investorPendingUnstake[msg.sender] = 0;” should be placed before
“InterfaceBIDSToken(bidsTokenContractAddress).transfer(msg.sender,
withdrawableAmount);” for security reason not to hack any token or double
spend.

“require(user!=address(0))” in “availableRewards” function missing.
And also the same address(0) check needed as:
 require(_investor!=address(0),"Invalid address"); in “updateTracker” function.

The ChangeSigner function updates new users to “true” but not disabling the
old one to “false” which may cause compromised security to some extent.

Fallback function can accept payment but there is no way to withdraw any
unclaimed amount , those currencies may be locked in the system, and because
the averaging system is being used as dividend distribution so for this point of
view also there should be admin withdrawal for unclaimed amounts.

Changing the globalHalt return value is always false.

Special requested calculation check for dividend distribution : As per request,
we checked the dividend distribution methodology for potential value
difference in outcomes. As per our observation, the distribution logic is based
on “averaging” methods to track payout and pending payout amount across all
the users. As averaging itself by nature, will never be accurate. So little
deviation is naturally with this approach as many other houses are using the
same method of distribution. So over large scale the -ve deviation will also be
averaged by +ve deviation so discrepancy will less over time, and hence this
method can be used for dividend distribution.

Note : If accurate distribution is needed , then we recommend to use separated
distribution records for each distribution with respect to each user’s deposit on
that instance of time. This method has only drawbacks if an user does not
withdraw for long, his loop of calculation will be too deep. Hence there will be
difficulty in withdrawing in one call. But this can be trically handled in
programming with limited loop iteration.

EtherAuthority Limited (www.EtherAuthority.io)

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks on
the code. Some of those are as below:

3.1: Over and under flows

SafeMath library is used in the contract, which prevents the possibility of
overflow and underflow attacks. Most contract parts worked well.

3.2: Short address attack

Although this contract ​is not vulnerable to this attack because it is good that
functions are called after checking the validity of the address from the outside
client.

3.3: Visibility & Delegate call

Delegate call is not used in the contract thus it does not have this vulnerability.

3.4: Reentrancy / The DAO /hack or double spend

Use of “require” function used which is good and Checks-Effects-Interactions
pattern in this smart contract mitigated this vulnerability, and also some calls
rooted internally is good and safe.

But the dividend distribution part in contract needs to shift value update before
transfer, because it is a public access type function so double-spend/reentrancy
is possible.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which
mitigated this vulnerability

3.6: Denial Of Service (DoS)

There ​is no ​any process consuming loops (if loops then limited) in the contracts
which could be used for DoS attacks. and thus this contract is safe to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Checks-Effects-Interactions pattern

While transferring tokens, this contract does all the process first and then

transfers them. The same while doing other processes too. This is very good

practice which prevents malicious possibility.

4.2 Functions input parameters passed

The functions in this contract verify the validity of the input parameters, and
these validations cannot be by-passed in anyway.

4.3 Conditions validations

The validation of input parameters is done to prevent overflow and underflow of
integers. Although the SafeMath library used is also a good programming flow.
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contr
acts/math/SafeMath.sol

EtherAuthority Limited (www.EtherAuthority.io)

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some
bug that would allow attackers to steal ether is a critical issue.

Multiple signer possibility : while changing signer pls disable the old
signer.
Transfer should be initiated after resetting the variable to avoid any
re-entrancy attack.

Above issue was rectified

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of
limitations. Like a bug allowing people to modify a random variable. These are
discussed above apart from that

** No such medium vulnerabilities found in contract.

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Compiler version can be fixed for higher one.

** No other low severity vulnerabilities found in contract.

8. Very low severity vulnerabilities found

The presence of these things does not make any negative effect. But just to
clean up the code.

** No such vulnerabilities found in contract.

9. Gas Optimization Discussion

=> The Contract quite good to gas (has low for the gas cost). Little more can
be improved by using more optimized storage by packing multiple variables
under uint256 size limit.

EtherAuthority Limited (www.EtherAuthority.io)

10. Summary of the Audit

Overall, after modification of all which are discussed above the compiled
output of code for token/dividend implementation as below.

Compiler showed couple of warnings, as below: this warning is for un-used
variable that can be removed to make code clean

while calling the smart contract functions.

Please try to check the address and value of the token externally before
sending to the solidity code.

It is also encouraged to run bug bounty programs and let the community help
to further polish the code to perfection.

So overall good and safe to go for production.

EtherAuthority Limited (www.EtherAuthority.io)

EtherAuthority Limited (www.EtherAuthority.io)

