
PIG TOKEN PROTOCOL
SMART CONTRACT CODE
REVIEW AND SECURITY

ANALYSIS REPORT

Customer : Pig Token Team (https://pigtoken.finance)
Prepared on : 24/03/2021
Platform: Binance Smart Chain
Language: Solidity
Audit Type: Standard

audit@etherauthority.io

Table of contents

Project File 4

Introduction 4

Quick Stats 5

Executive Summary 6

Code Quality 6

Documentation 7

Use of Dependencies 7

AS-IS overview 8

Severity Definitions 10

Audit Findings 11

Conclusion 13

Our Methodology 14

Disclaimers 16

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.

Project file

Name Smart Contract Code Review and Security
Analysis Report for PIG TOKEN

Platform Binance Smart Chain / Solidity

File 1 PigToken.sol

File 1 MD5 hash 06EC31E96FE528D2CE45BFCD0B55FBEB

File 1 BscScan
Contract URL

https://bscscan.com/address/0x8850d2c68c632e
3b258e612abaa8fada7e6958e5#code

Date 24/03/2021

Introduction
We were contracted by the Pig Token team to perform the Security audit of
the smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on 24/03/2021.

The Audit type was Standard Audit. Which means this audit is concluded
based on Standard audit scope, which is one security engineer performing
audit procedure for 2 days. This document outlines all the findings as well as
AS-IS overview of the smart contract codes.

https://bscscan.com/address/0x8850d2c68c632e3b258e612abaa8fada7e6958e5#code
https://bscscan.com/address/0x8850d2c68c632e3b258e612abaa8fada7e6958e5#code

Quick Stats:

Main
Category

Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks
management

Passed

Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use

vulnerability
N/A

Fallback function misuse Passed
Race condition Passed

Logical vulnerability Passed
Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed
Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Other code specification issues Passed
Gas

Optimization
Assert() misuse Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Executive Summary
According to the standard audit assessment, Customer`s solidity smart
contract is well secured.

You are here

We used various tools like SmartDec, Mythril, Slither and Remix IDE. At the
same time this finding is based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section. General
overview is presented in AS-IS section and all found issues can be found in
the Audit overview section.

We found 0 high, 0 medium and 1 low and some very low level issues.

Code Quality
Pig Token protocol consists of 1 core smart contract file. These smart

contracts also contain Libraries, Smart contract inherits and Interfaces.

These are compact and well written contracts.

The libraries in the Pig Token protocol are part of its logical algorithm. A

library is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned a specific address and

its properties / methods can be reused many times by other contracts in the

Pig Token protocol.

The Pig Token team has not provided scenario and unit test scripts, which

would have helped to determine the integrity of the code in an automated

way.

Overall, code parts are not well commented. Commenting can provide rich

documentation for functions, return variables and more. Ethereum Natural

Language Specification Format (NatSpec) is recommended.

Documentation

We were given Pig Token smart contracts code in the form of BscScan web

link. The hash of that file and its web link are mentioned above in the table.

As mentioned above, most code parts are not well commented. so anyone

can not quickly understand the programming flow as well as complex code

logic. Comments are very helpful in understanding the overall architecture of

the protocol.

Another source of information was its official website pigtoken.finance which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract

infrastructure that are based on well known industry standard open source

projects. And their core code blocks are written well.

Apart from libraries, Pig Token smart contract depends on pancakeswap

smart contracts as external smart contract calls.

AS-IS overview

Pig Token is a BEP20 standard smart contract. It also has other features like
diffraction, swapping, farming, etc. The smart contract was deployed in BSC
mainnet at the time of the audit. And ownership was renounced, which is a
good thing. Following are the main components of core smart contracts.

PigToken.sol

(1) Interfaces
(a) IERC20: provides BEP20 token standard
(b) IUniswapV2Factory: factory interface of pancakeswap
(c) IUniswapV2Pair: pancakeswap’s interface
(d) IUniswapV2Router01: pancakeswap’s router 1 interface
(e) IUniswapV2Router02: pancakeswap’s router 2 interface

(2) Inherited contracts
(a) Ownable: ownership contract. Ownership is renounced
(b) Context: provides msg.sender and msg.value context
(c) IERC20: provides BEP20 functions

(3) Usages
(a) using SafeMath for uint256
(b) using Address for address

(4) Events
(a) event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);
(b) event SwapAndLiquifyEnabledUpdated(bool enabled);
(c) event SwapAndLiquify(uint256 tokensSwapped, uint256 ethReceived,

uint256 tokensIntoLiqudity);

(5) Functions

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 name read Passed No Issue Passed
3 symbol read Passed No Issue Passed
4 decimals read Passed No Issue Passed
5 totalSupply read Passed No Issue Passed
6 balanceOf read Passed No Issue Passed
7 transfer write Passed No Issue Passed
8 allowance read Passed No Issue Passed
9 approve write Passed No Issue Passed
11 transferFrom write Passed No Issue Passed
12 increaseAllowance write Passed No Issue Passed
13 decreaseAllowance write Passed No Issue Passed
14 isExcludedFromRewar

d
read Passed No Issue Passed

15 totalFees read Passed No Issue Passed
16 deliver write Passed No Issue Passed
17 reflectionFromToken read Passed No Issue Passed
18 tokenFromReflection read Passed No Issue Passed
19 excludeFromReward write Renounced No Issue Passed
20 includeInReward write Renounced No Issue Passed
21 _transferBothExcluded private Passed No Issue Passed
22 includeInFee write Renounced No Issue Passed
23 setTaxFeePercent write Renounced No Issue Passed
24 setLiquidityFeePercent write Renounced No Issue Passed
25 setMaxTxPercent write Renounced No Issue Passed
26 setSwapAndLiquifyEna

bled
write Renounced No Issue Passed

27 _reflectFee private Passed No Issue Passed
28 _getValues private Passed No Issue Passed
29 _getTValues private Passed No Issue Passed
30 _getRValues private Passed No Issue Passed
31 _getRate private Passed No Issue Passed
32 _getCurrentSupply private Passed No Issue Passed
33 _takeLiquidity private Passed No Issue Passed
34 calculateTaxFee private Passed No Issue Passed
35 calculateLiquidityFee private Passed No Issue Passed
36 removeAllFee private Passed No Issue Passed
37 restoreAllFee private Passed No Issue Passed
38 isExcludedFromFee read Passed No Issue Passed

39 _approve private Passed No Issue Passed
40 _transfer private Passed No Issue Passed
41 swapAndLiquify private Passed No Issue Passed
42 swapTokensForEth private Passed No Issue Passed
43 addLiquidity private Passed No Issue Passed
44 _tokenTransfer private Passed No Issue Passed
45 _transferStandard private Passed No Issue Passed
46 _transferToExcluded private Passed No Issue Passed
47 _transferFromExcluded private Passed No Issue Passed

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.
High-level vulnerabilities are difficult to exploit;

High however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) Infinite loops possibility at two places:

includeInReward and _getCurrentSupply have a loop without explicit limits in

_excluded array.

Resolution: Since ownership is renounced, the owner can not exclude any

more wallets and this issue is auto-resolved now.

Very Low

(1) Use the latest solidity version while contract deployment to prevent any

compiler version level bugs.

Resolution: This issue is acknowledged.

(3) Event log must be fired in place where the stats are being changed. for

example:

● deliver

● excludeFromReward

● includeInReward

Resolution: This issue is acknowledged.

Discussion / Best practices:

(1) Approve of BEP20 standard: This can be used to front run. From the

client side, only use this function to change the allowed amount to 0 or from 0

(wait till transaction is mined and approved). This should be done from the

client side.

(2) All functions which are not called internally, must be declared as

external. It is more efficient as sometimes it saves some gas.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best

-practices

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices
https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Conclusion

We were given contract code. And we have used all possible tests based on

given objects as files. The contracts are written so systematically, that we did

not find any major issues. So it is good to go for the production.

Since possible test cases can be unlimited for such extensive smart contract

protocol, so we provide no such guarantee of future outcomes. We have used

all the latest static tools and manual observations to cover maximum possible

test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with

static analysis tools. Smart Contract’s high level description of functionality

was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security state of the reviewed contract, based on extensive audit procedure

scope is “Well Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web site

to get a high level understanding of what functionality the software under

review provides. We then meet with the developers to gain an appreciation of

their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm

threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code

dependencies, skim open issue tickets, and generally investigate details other

than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and impact

of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyze the feasibility of an

attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinized by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the
best industry practices at the date of this report, in relation to: cybersecurity
vulnerabilities and issues in smart contract source code, the details of which
are disclosed in this report, (Source Code); the Source Code compilation,
deployment and functionality (performing the intended functions).

Due to the fact that the total number of test cases are unlimited, so the audit
makes no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the
code, bugfree status or any other statements of the contract. While we have
done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only. We also suggest
to conduct a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have their own vulnerabilities that can lead to hacks. Thus, the
audit can’t guarantee explicit security of the audited smart contracts.

