

SMART CONTRACT CODE REVIEW AND
SECURITY ANALYSIS REPORT

For

MatchNet.io (Order #22052020)

Prepared By: Chandan Kumar
Prepared For: Matchnet.io
Prepared on: 22/05/2020
Revised on: 02/06/2020
audit@etherauthority.io

EtherAuthority Limited (www.EtherAuthority.io)

THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION

ABOUT IT SYSTEMS AND INTELLECTUAL PROPERTY OF THE

CUSTOMER AS WELL AS INFORMATION ABOUT POTENTIAL

VULNERABILITIES AND METHODS OF THEIR EXPLOITATION.

THE REPORT CONTAINING CONFIDENTIAL INFORMATION CAN

BE USED INTERNALLY BY THE CUSTOMER OR IT CAN BE

DISCLOSED PUBLICLY AFTER ALL VULNERABILITIES ARE FIXED

- UPON DECISION OF CUSTOMER.

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Gas Optimization Discussion

9. Discussions and improvements

10. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

EtherAuthority (Consultant) was contracted by MatchNet (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of Customer`s smart contract
and its code review conducted between May, 14th 2020 – May 22nd, 2020;
The project has five smart contract files:

● MatchToken.sol 209 lines

● RollContract.sol 327 lines

● MatchTokenDiv.sol 258 Lines

● LuxeSweep.sol 186 Lines

● LuxeSweepDiv.sol 258 Lines

It contains approx 1237 lines of Solidity code. TRC20 standard implemented
properly. Logical flows are good. Safe math is also implemented correctly and
other control access and security measures taken good care of. But there are
some findings while auditing, where some can be ignored but some of them
must be corrected and tested before production. This file is perfectly fit and
recommended for production purpose, only if pointed findings are
cured/checked against plan/security.

The audit was performed by two senior solidity auditors at EtherAuthority. The
team has extensive work experience in developing and auditing the smart
contracts.

EtherAuthority Limited (www.EtherAuthority.io)

 Quick Stats:

EtherAuthority Limited (www.EtherAuthority.io)

Main Category Subcategory Result

Contract Solidity version not specified Passed
Programming

Solidity version is old Passed

 Integer overflow/underflow Passed

 Function input parameters lack of check Passed

 Function input parameters check bypass Passed

 Function access control lacks management Passed

 Critical operation lacks event log Passed

 Human/contract checks bypass Passed

 Random number generation/use vulnerability Passed

 Fallback function misuse Passed

 Race condition Passed

 Logical vulnerability Passed

 Other programming issues Passed

Code Visibility not explicitly declared Passed
Specification

Var. storage location not explicitly declared Passed

 Use keywords/functions to be deprecated Passed

 Other code specification issues Passed

Gas Assert() misuse Passed

Optimization

Burn Lower limit for Burn N/A

Overall Audit Result: PASSED

Point of Marks:

According to the assessment, Customer`s smart contract is secured.

 You are here

EtherAuthority Limited (www.EtherAuthority.io)

 High consumption ‘for/while’ loop Passed

 High consumption ‘storage’ storage Passed

 “Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set Passed

 “Short Address” Attack Passed

 “Double Spend” Attack Passed

Automated tools findings are as below:

This audit procedure also included the use of automated software to further
scan of the code to identify potential issues:

https://tool.smartdec.net/scan/62f88fae08c44d4d86ed133a19ad421e
https://tool.smartdec.net/scan/bb02b74670c148769c86e2c363f64f6d

● Locked money [Warning]
● Overpowered role [Warning]
● Compiler version not fixed [Ignore]
● Private modifier [Ignore]
● Use of SafeMath [Ignore]
● Prefer external to public visibility level [Ignore]
● Implicit visibility level [Warning]

https://tool.smartdec.net/scan/250df9e709c842ffb7c2352e7b3c1e27
https://tool.smartdec.net/scan/8169e38ee1bb4682baebf7c34eed4186

● Extra gas consumption [Warning]
● Compiler version not fixed [Ignore]
● Private modifier [Ignore]
● Use of SafeMath [Ignore]
● Replace multiple return values with a struct [Ignore]
● ETH transfer inside the loop [Warning]
● Prefer external to public visibility level [Ignore]
● Implicit visibility level [Warning]

https://tool.smartdec.net/scan/76d42bf023b0422084467c74415f51b2

● Multiplication after division [Error]
● Overpowered role [Warning]
● Compiler version not fixed [Ignore]
● Private modifier [Ignore]
● Use of SafeMath [Ignore]
● Prefer external to public visibility level [Ignore]
● Implicit visibility [Warning]

EtherAuthority Limited (www.EtherAuthority.io)

https://mythx.io tool provided as remix.ethereum.org plugin

Above are the only few points raised by the automated tools and taken into
consideration, and these are not such a problem actually for ex. loops are
limited by iteration, safe math protects some attacks, and address zero is
checked to move into the processing part of the function so All are OK as
indicated by the above tools also.

Details of Findings/Issues:

1. MatchToken.sol
o Owner address cannot be changed later , In future it may create

big trouble if this address is compromised [Rectified]
o unlockFinds, setDivContract, updateGameContract all are payable

but which is not necessary. It will create extra gas and
unnecessary code size of contract. And If via these some TRX is
paid to contract there is no way to withdraw those trx which is
critical.[Rectified]

o No event fired on “mine” function[Rectified]
o “Mine” function will stop working when _totalSupply will be

equal to _minedSupply if it is part of plan then OK[Rectified]
o Storage variable “decimal = 6 ” no where used.[Rectified]
o Funds once unlocked by the admin cannot be locked again if

required for safety reasons.[Rectified]

2. LuxeSweep.sol
o Owner address cannot be changed later , In future it may create

big trouble if this address is compromised[Rectified]
o unlockFinds, setDivContract are payable but which is not

necessary. It will create extra gas and unnecessary code size of
contract. And If via these some TRX is paid to contract there is no
way to withdraw those trx, which is critical.[Rectified]

o Storage variable “decimal = 6 ” no where used.[Rectified]
o Funds once unlocked by the admin cannot be locked again if

required for safety reasons.[Rectified]

3. MatchTokenDiv.sol and LuzeSweepDiv.sol
o No upper capping on daily percent if admin set it to higher value

by mistake may cause wrong value transaction to list of wallets
which in turn put house in loss/extra burden on owner/admin.
[Rectified]

EtherAuthority Limited (www.EtherAuthority.io)

https://mythx.io/

o Calculation error may occur if (divBalanceTRX x dailyPercent) is
less than 100.[Rectified]

o It will be very tedious and error prone (may double distribute to
some user) due to human error for admin and if it is being done
by script it is going to consume too much GAS while calling
divDistribution or CompleteDivDistribution function suppose if we
say the number of user is in millions, and the entire transaction
cost will be too high for the owner, better to use (code) passive
withdraw instead of it. It is also potential for double spend and
reentrancy which may also put the house on loss. [Rectified]

o While calculating percentage fractional part is not handled
properly which may lead to return 0 amount instead of valid
amount on many occasions [Rectified]

4. RollContract.sol
o game will stop after a certain time when mined reached up to total

supply [Rectified]
o bracket missing in line 218 for combination of && with || which is

critical [Rectified]
o “userSeed[player]” is nowhere updated any value so the else block

of line 254 is useless. [Rectified]
o some of the functions has no return specified [Rectified]
o No withdraw function found for emergency withdrawal in case

some fund is stuck in contract due to logical imbalance or fractional
remaining. [Rectified]

EtherAuthority Limited (www.EtherAuthority.io)

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks on
the code. Some of those are as below:

3.1: Over and under flows

SafeMath library is used in the contract, which prevents the possibility of
overflow and underflow attacks. Contract worked well under this test.

3.2: Short address attack

Although this contract is not vulnerable to this attack because it is good that
functions are called after checking the validity of the address from the outside
client.

3.3: Visibility & Delegate call

Delegate call is not used in the contract thus it does not have this vulnerability.

3.4: Reentrancy / The DAO /hack or double spend

Use of “require” function used which is good and Checks-Effects-Interactions
pattern in this smart contract mitigated this vulnerability, and also some calls
rooted internally like “ _transfer” are good and safe. The dividend distribution
part in both DIV contracts need to shift value subtraction before transfer,
because it is an admin/owner only function so it is limited by public access but
still double-spend/reentrancy possible. [Rectified]

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which
mitigated this vulnerability

3.6: Denial Of Service (DoS)

There is no any process consuming loops (if loops then limited) in the contracts
which could be used for DoS attacks. and thus this contract is safe to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Checks-Effects-Interactions pattern

While transferring tokens, this contract does all the process first and then
transfers them. The same while doing other processes too. This is very good
practice which prevents malicious possibility. For example: transfer() function.

4.2 Functions input parameters passed

The functions in this contract verify the validity of the input parameters, and
these validations cannot be by-passed in anyway.

4.3 Conditions validations

The validation of input parameters is done to prevent overflow and underflow
of integers. Although the SafeMath library used is also a good programming
flow.
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contr
acts/math/SafeMath.sol

4.4 More Pointers
Apart from errors and warnings (must solve before deploy), these contract are:

● Latest version (except luxeSweep which does not complied with the
latest version).

● Correct implementation of TRC20 standard.
● Perfect administrative control
● Optimized for GAS.
● Good use of safe math.
● Controlled minting by admin with upper limit.
● Molecular security using “locked” features.
● Properly commented.

EtherAuthority Limited (www.EtherAuthority.io)

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some
bug that would allow attackers to steal ether is a critical issue.

● Some Mentioned in Details of Findings/Issues on page 8

Apart from that no other critical vulnerabilities were found.

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of
limitations. Like a bug allowing people to modify a random variable.

** No such medium vulnerabilities found in contract.

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

● Some Mentioned in Details of Findings/Issues on page 8

** No other low severity vulnerabilities found in contract.

EtherAuthority Limited (www.EtherAuthority.io)

8. Gas Optimization Discussion

=> The Contract is quite good in terms of gas cost. Little more can be
improved by using more optimized storage by packing multiple variables
under uint256 size limit.

9. Discussions and improvements

** Page 8, “Details of Findings” section, is the most important to
focus on, to check for improvements.

10. Summary of the Audit

After suggested modifications, this contract is safe to move on production.
It is still subject to test again after modification.

It is also encouraged to run bug bounty programs and let the community help
to further polish the code to perfection.

TRC20 standard implemented properly. Logical flows are good. Safe math is
also implemented correctly and other control access and security measures
take good care but there are some findings while auditing , some can be
ignored but some of them must be corrected and tested before production.

⇨ So overall good to go for production.

EtherAuthority Limited (www.EtherAuthority.io)

EtherAuthority Limited (www.EtherAuthority.io)

