

SMART CONTRACT AUDIT REPORT

For

LYNK Token(Order # 05NOV2018A)

Prepared By: Yogesh Padsala Prepared For: Lynked.World

Prepared on: 05/11/2018 https://lynked.world

audit@etherauthority.io

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Discussions and improvements

9. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has following file:

● LYNKToken.sol

It contains approx 461 lines of Solidity code. All the functions and state

variables are well commented using the natspec documentation, which

increased the readability.

The audit was performed by Yogesh Padsala, from EtherAuthority Limited.

Yogesh has extensive work experience of developing and auditing the smart

contracts.

The audit was based on the solidity compiler 0.4.25+commit.59dbf8f1 with

optimization enabled compiler in remix.ethereum.org

This audit was also performed verification of the details exist in whitepaper:

https://tokensale.lynked.world/images/LynkedWorld_Whitepaper.pdf

EtherAuthority Limited (www.EtherAuthority.io)

Quick Stats:

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version too old Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Not Passed

Other code specification issues Passed

Gas
Optimization

Assert() misuse Passed

High consumption ‘for/while’ loop Passed

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk Evil mint/burn Passed

The maximum limit for mintage not set Passed

“Fake Charge” Attack Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

Auto Fuzzing Passed

Overall Audit Result: PASSED

EtherAuthority Limited (www.EtherAuthority.io)

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks in

order to make sure that the contract is secure and follows best practices.

3.1: Over and under flows

This contract does check for overflows and underflows by using

OpenZeppelin's SafeMath to mitigate this attack, and all the functions have

strong validations, which prevented this attack.

3.2: Short address attack

Although this contract is not vulnerable to this attack, it is highly

recommended to call functions after checking validity of the address from the

outside client.

3.3: Visibility & Delegatecall

Delegatecall is not used in the contract thus it does not have this vulnerability.

And visibility is also used properly at most places.

3.4: Reentrancy / TheDAO hack

Use of “require” function and Checks-Effects-Interactions pattern in this smart

contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DOS)

There is no process consuming loops in the contracts which can be used for

DoS attacks. Also, there is no progressing state based on external calls, and

thus this contract is not prone to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Checks-Effects-Interactions pattern
While transferring tokens, this contract does all the process first and then

transfers them. The same while doing other process too. This is very good

practice which prevents malicious possibility. For example: transferFrom()

function.

4.2 Higher degree of admin control
This is always considered a great practice for the owner to halt or resume the

token transfer and other process.

This is really useful in any unexpected event. So, admin can place safeguard on

the contract until the issue is resolved. And he can resume it back again once

the issue would be resolved.

4.3 Functions input parameters passed
The functions in this contract verifies the validity of the input parameters, and

this validations cannot be by-passed in anyway.

4.4 Declare variables as constant
The value of variables at line number #229, #230, and #231, etc., is not

expected to change. Thus it is good thing to declare them as constant, which

helps reduce the gas cost.

4.5 Multi sign administration
It is good practice to delegate administration of the contract through many

admins. Rather than having only one admin/owner address, this is really

helpful especially in any unintended event of theft or compromise of the

private key of the owner wallet.

EtherAuthority Limited (www.EtherAuthority.io)

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

=> No Critical vulnerabilities found

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

=> No Medium vulnerabilities found

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Gas cost optimization

The transfer function (at line number: #367) has some conditions which

returns the same results for many conditions. Line number: #383 - #395

So basically, whichever condition will run, it will produces the same result of

transferring the tokens..

That means if you remove all the conditions and just put:

return super.transfer(_to, _value);

Then also it will produce the same outcome. so that will save lots of gas cost to

users while doing any transfer.

If this is really necessary, then it would help to create logic which combines as

many conditions as possible to reduce the duplicate code and to make code

more gas cost optimization.

The same thing for transferFrom() at line number: #404

EtherAuthority Limited (www.EtherAuthority.io)

7.1: Deprecated constructions

At line numbers #439 and #448, functions are declared as “constant”. This is

deprecated. Instead use “view”.

https://github.com/ethereum/solidity/issues/992

7.2: Redundant fallback function

The payment rejection fallback is redundant. So, following code has no use:

function () { revert(); }

Starting from Solidity 0.4.0, contracts without a fallback function automatically

revert payments, making the code above redundant.

Thus, please remove above function to save space. the contract will reject

payments automatically.

https://solidity.readthedocs.io/en/develop/contracts.html#fallback-function

7.3: Token price in Fiat

Since EVM does not accept Fiat currency directly, specifying token price in USD

or any other fiat currency will need to be converted into ETH.

And due to volatility of the ETH, there might be slight difference in the pricing.

On another hand, it is very good to specify the price of token in ETH, which is

easier to implement in the code.

For example: 1 ETH = 1000 Tokens

7.4: Implicit visibility level

Some place in the code, the visibility was not specified. as like: line numbers

#87, #89, #241, #242.

Now, this is not a big issue, as it takes default to “public”. But it is good practice

to explicitly declare the visibility of the state variables.

https://solidity.readthedocs.io/en/develop/contracts.html#visibility-and-getters

EtherAuthority Limited (www.EtherAuthority.io)

https://github.com/ethereum/solidity/issues/992
https://solidity.readthedocs.io/en/develop/contracts.html#fallback-function

8. Discussions and improvements

8.1 Prepare the code for the solidity version: 0.5.0

There are many improvements and upgrades will be introduced. As like:

Make your fallback functions external.

https://github.com/ethereum/solidity/blob/develop/Changelog.md#050-unrel

eased

8.2 approve() of ERC20 Standard

To prevent attack vectors like the one described here and discussed here,

clients SHOULD make sure to create user interfaces in such a way that they set

the allowance first to 0 before setting it to another value for the same spender.

THOUGH the contract itself shouldn't enforce it, to allow backwards

compatibility with contracts deployed before

8.3 While using SafeMath library

The SafeMath library is doing the great job to prevent overflow and underflow.

However, it is recommended NOT to use it when overflow/underflow is

impossible. Because please keep in mind that every unnecessary checks

contribute to increased gas cost!

8.4 Consider using self-destruct function

It many times happens, where contract owner would need to upgrade the

contract or to add any important feature in the contract.

So, the only way that can be possible by creating brand new contract and

destroying the old one. And that time, self-destruct comes to help.

But again, if your business logic is such that owner can not destruct the

contract, then this point can be safely ignored.

EtherAuthority Limited (www.EtherAuthority.io)

https://github.com/ethereum/solidity/blob/develop/Changelog.md#050-unreleased
https://github.com/ethereum/solidity/blob/develop/Changelog.md#050-unreleased

9. Summary of the Audit

Overall the code performs good data validations as well as meets the

correctness of data according to the information presented in the whitepaper:

https://tokensale.lynked.world/images/LynkedWorld_Whitepaper.pdf

The compiler also displayed 651 warnings:

Now, we checked that the warnings in purple division, are due to their static

analysis, which includes like gas estimations and all. So, it is important to

supply correct gas values while calling various functions.

Those warnings can be safely ignored as should be taken care while calling the

smart contract functions.

The warnings in orange division should be resolved, which is mainly consist of

correct checksum of the hard coded addresses.

Please try to check the address and value of token externally before sending to

the solidity code.

It is also encouraged to run bug bounty program and let community help to

further polish the code to the perfection.

EtherAuthority Limited (www.EtherAuthority.io)

