
 

 

 

 

 

 

 

SMART CONTRACT AUDIT REPORT 

For 

DlikeToken (Order #15MAR2019A) 

 

 

 

 

 

Prepared By​: Yogesh Padsala                  ​Prepared For​:​ ​DLike Group 

Prepared on​: 15/03/2019                          ​https://dlike.io 

Revised on​: 16/03/2019 

audit@etherauthority.io 

https://dlike.io/


 

 

Table of Content 

 

1. Disclaimer 

2. Overview of the audit  

3. Attacks made to the contract 

4. Good things in smart contract 

5. Critical vulnerabilities found in the contract 

6. Medium vulnerabilities found in the contract 

7. Low severity vulnerabilities found in the contract 

8. Discussions and improvements 

9. Summary of the audit 

 

 

 

 

 

 

 

 

 

 

 

EtherAuthority Limited (www.EtherAuthority.io)  



 

1. Disclaimer 

The audit makes no statements or warranties about utility of the code, safety             

of the code, suitability of the business model, regulatory regime for the            

business model, or any other statements about fitness of the contracts to            

purpose, or their bug free status. The audit documentation is for discussion            

purposes only. 

2. Overview of the audit  

The project has following file: 

● DlikeToken.sol 

It contains approx 378 ​lines of Solidity code. All the functions and state             

variables are well commented using the natspec documentation, which         

increases readability. 

The audit was performed by Yogesh Padsala, from EtherAuthority. Yogesh has           

extensive work experience of developing and auditing the smart contracts. 

The audit was based on the solidity compiler 0.5.6+commit.b259423e with          

optimization enabled compiler in ​remix.ethereum.org 

This audit procedure also included the scanning the code from other third            

party softwares to further identification of issues: 

https://tool.smartdec.net/scan/46c4b3125df4473a8bd00d249dfa902c 

As seen in above smartdec report, there are many warnings displayed. Now,            

we checked carefully about those and we confirm that many of those are not              

relevant to DLike use case and many are just for information. 

 

  

EtherAuthority Limited (www.EtherAuthority.io)  



 

Quick Stats: 

 

Overall Audit Result: ​PASSED  

EtherAuthority Limited (www.EtherAuthority.io)  

Main Category Subcategory Result 

Contract 
Programming 

Solidity version not specified Passed 

Solidity version too old Passed 

Integer overflow/underflow Passed 

Function input parameters lack of check Passed 

Function input parameters check bypass Passed 

Function access control lacks management Passed 

Critical operation lacks event log Passed 

Human/contract checks bypass Passed 

Random number generation/use vulnerability N/A 

Fallback function misuse Passed 

Race condition Passed 

Logical vulnerability Passed 

Other programming issues Passed 

Code 
Specification 

Function visibility not explicitly declared Passed 

Var. storage location not explicitly declared Passed 

Use keywords/functions to be deprecated Passed 

Other code specification issues Passed 

Gas 
Optimization 

Assert() misuse Passed 

High consumption ‘for/while’ loop N/A 

High consumption ‘storage’ storage Passed 

“Out of Gas” Attack Passed 

Business Risk The maximum limit for mintage not set Passed 

“Short Address” Attack Passed 

“Double Spend” Attack Passed 



 

3. Attacks tested on the contract 

In order to check for the security of the contract, we tested several attacks in               

order to make sure that the contract is secure and follows best practices. 

3.1: Over and under flows 

SafeMath library is used in the contract, which prevented the possibility of            

overflow and underflow attacks.  

3.2: Short address attack 

Although this contract ​is not vulnerable to this attack, it is highly            

recommended to call functions after checking validity of the address from the            

outside client. 

3.3: Visibility & Delegatecall 

Delegatecall is not used in the contract thus it does not have this vulnerability.              

And visibility is also used properly.  

3.4: Reentrancy / TheDAO hack 

Use of “require” function and Checks-Effects-Interactions pattern in this smart          

contract mitigated this vulnerability.  

3.5: Forcing ether to a contract 

Here, the Smart Contract’s balance has never been used as guard, which            

mitigated this vulnerability 

3.6: Denial Of Service (DoS) 

There ​is No ​any process consuming loops in the contracts which can be used              

for DoS attacks. and thus this contract is not prone to DoS.  

EtherAuthority Limited (www.EtherAuthority.io)  



 

    
4. Good things in the smart contract 

4.1 Checks-Effects-Interactions pattern 
While transferring tokens, this contract does all the process first and then            

transfers them. The same while doing other process too. This is very good             

practice which prevents malicious possibility. For example: transfer() function. 

4.2 Functions input parameters passed 
The functions in this contract verifies the validity of the input parameters, and             

this validations cannot be by-passed in anyway. 
 

4.3 Good input validations 

 

This function checks all the possible data sets to be valid. 
 

4.4 Declaring variables as constant 
Line number #111, #112, #113 the variables are declared as constant, which is             

good as it saves some gas cost! 
 

5. Critical vulnerabilities found in the contract 

Critical issues that could damage heavily the integrity of the contract. Some            

bug that would allow attackers to steal ether is a critical issue. 

=> No Critical vulnerabilities found 
 

6. Medium vulnerabilities found in the contract 

Those vulnerabilities that could damage the contract but with some kind of            

limitations. Like a bug allowing people to modify a random variable. 

=> No Medium vulnerabilities found 

EtherAuthority Limited (www.EtherAuthority.io)  



 

 

7. Low severity vulnerabilities found 

Those do not damage the contract, but better to resolve and make code clean. 

=> No Low vulnerabilities found - Good job team! 

8. Discussions and improvements 

8.1 approve() of ERC20 Standard 

To prevent attack vectors regarding approve() like the one described here:           

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh

4DYKjA_jp-RLM/edit , clients SHOULD make sure to create user interfaces in           

such a way that they set the allowance first to 0 before setting it to another                

value for the same spender. THOUGH the contract itself shouldn't enforce it, to             

allow backwards compatibility with contracts deployed before 

8.2 Over power user 

This contract has only one owner, which does all the admin only functions.             

Now, it is good idea to have multiple admins and delegates roles and             

responsibilities to those. This is useful in any unintended events such as: death             

of owner or loss of private key of owner account. 

8.3 While using SafeMath library 

We ​do not recommend using SafeMath library for all arithmetic operations. It            

is good practice to use explicit checks where it is really needed, and to avoid               

extra checks where overflow/underflow is impossible. 

8.4 Maximum minting limit is not set 

Owner must take responsibility as how many tokens should be minted. The            

more tokens generation would cause inflation in the system causing reduction           

of the token value in entire token ecosystem. 

Edit: Dlike team has rectified this. And contract is no longer prone to this issue! 

 

EtherAuthority Limited (www.EtherAuthority.io)  

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit


 

9. Summary of the Audit 

Overall, the code is well commented and performs all the data validations. 

Compiler also showed 12 warnings, as below: 

 

Now, we checked that the warnings in purple division, are due to their static              

analysis, which includes like gas estimations and all. So, it is important to             

supply correct gas values while calling various functions. 

Those warnings can be safely ignored as should be taken care while calling the              

smart contract functions. 

Please try to check the address and value of token externally before sending to              

the solidity code. 

It is also encouraged to run bug bounty program and let community help to              

further polish the code to the perfection. 

  

EtherAuthority Limited (www.EtherAuthority.io)  


