
Customer: DeGeThal
Website: https://www.degethal.io
Platform: Binance Smart Chain
Language: Solidity
Date: June 19th, 2021

https://www.degethal.io


Table of contents

Introduction  ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………. 6

Technical Quick Stats  …..……………………………………………………………………… 7

Code Quality  ……………………………………………………………………………………. 8

Documentation  ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 16

Our Methodology ………………………………………………………………………………... 17

Disclaimers ………………………………………………………………………………………. 19

Appendix

● Code Flow Diagram ……………………………………………………………………... 20

● Slither Report Log ……………………………………………………………………….. 21

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.2et92p0
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.tyjcwt
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.4d34og8


THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.



Introduction
We were contracted by the DeGeThal team to perform the Security audit of the DeGeThal
Token smart contract code. The audit has been performed using manual analysis as well
as using automated software tools. This report presents all the findings regarding the audit
performed on June 19th, 2021.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
DeGeThal is: easy to use, securely stored and it is tailored to everyone’s needs.

DeGeThal is building a DeGeThal crypto currency for everyone, the currency that is

designed to serve as a payment token for all transactions in the ecosystem.

Audit scope

Name Code Review and Security Analysis Report for
DeGeThal Token Smart Contract

Platform BSC / Solidity

File DeGeThal.sol

Smart Contract Online
Code

https://testnet.bscscan.com/address/0xC62b6518B8CF5
F5BB9A1440d110C9F648da695Ee#code

File MD5 Hash F0868A76BCB6BF2402585236F09A8A96

Audit Date June 19th, 2021

https://testnet.bscscan.com/address/0xC62b6518B8CF5F5BB9A1440d110C9F648da695Ee#code
https://testnet.bscscan.com/address/0xC62b6518B8CF5F5BB9A1440d110C9F648da695Ee#code


Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Name: DeGeThal YES, This is valid.

Symbol: DTM YES, This is valid.

Decimal: 18 YES, This is valid.

TaxFee: 3% YES, This is valid.Owner can change
this fee.

MaxTxAmount: 500000 YES, This is valid.Owner can change
this fee.

LiquidityFee: 3% YES, This is valid.Owner can change
this fee.

The owner can access functions like

:updateRouter, updateTokenLimit,

excludeFromReward, includeInReward,

excludeFromFee, includeInFee,

setTaxFeePercent, setLiquidityFeePercent,

setMaxTxPercent,

setSwapAndLiquifyEnabled, etc.

YES, This is valid. The smart contract
owner controls these functions, so the
owner must handle the private key of
the owner's wallet very securely.
Because if the private key is
compromised, then it will create
problems.



Audit Summary
According to the standard audit assessment, Customer`s solidity smart contract is
secured. These contracts also have owner functions (described in the centralization
section below), which does not make everything 100% decentralized. Thus, the owner
must execute those smart contract functions as per the business plan.

You are here

We used various tools like MythX, Slither and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 5 low and some very low level issues.



Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability Passed
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Other code specification issues Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED



Code Quality
This audit scope has 1 smart contract. This smart contract also contains Libraries, Smart

contracts inherits and Interfaces.  This is a compact and well written contract.

The libraries in the DeGeThal Token are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the  DeGeThal Token.

The DeGeThal team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Some code parts are not  well commented on smart contracts.

Documentation

We were given DeGeThal Token smart contract code in the form of a BscScan web link.

The hashes of that code are mentioned above in the table.

As mentioned above, some code parts are not well commented. So it is difficult to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://www.degethal.io which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects. And their core code blocks

are written well.

Apart from libraries,  its functions are used in external smart contract calls.

https://www.degethal.io/


AS-IS overview

DeGeThal token is a smart contract, having functionality like swap and Liquify, burn, etc.

DeGeThal.sol

(1) Interface
(a) interface

(b) IUniswapV2Factory

(c) IUniswapV2Pair

(d) IUniswapV2Router01

(e) IUniswapV2Router02

(2) Inherited contracts
(a) Context

(b) Ownable

(c) IERC20

(3) Usages
(a) using SafeMath for uint256;

(b) using Address for address;

(4) Events
(a) event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

(b) event SwapAndLiquifyEnabledUpdated(bool enabled);

(c) event SwapAndLiquify(uint256 tokensSwapped,uint256 ethReceived, uint256

tokensIntoLiqudity);



(5) Functions

Sl. Functions Type Observation Conclusion
1 lockTheSwap modifier Passed No Issue
2 updateRouter external access only

Owner
No Issue

3 updateTokenLimit write Passed No Issue
4 name read Passed No Issue
5 symbol read Passed No Issue
6 decimals read Passed No Issue
7 totalSupply read Passed No Issue
8 balanceOf read Passed No Issue
9 transfer write Passed No Issue

10 allowance read Passed No Issue
11 approve write Passed No Issue
12 transferFrom write Passed No Issue
13 increaseAllowance write Passed No Issue
14 decreaseAllowance write Passed No Issue
15 isExcludedFromReward read Passed No Issue
16 totalFees read Passed No Issue
17 deliver write Passed No Issue
18 reflectionFromToken read Passed No Issue
19 tokenFromReflection read Passed No Issue
20 excludeFromReward write Missing Events No Issue
21 includeInReward external Infinite loop

possibility
Refer Audit

Findings
22 excludeFromFee write Missing Events No Issue
23 includeInFee write Missing Events No Issue
24 setTaxFeePercent external Missing Events No Issue
25 setLiquidityFeePercent external Missing Events No Issue
26 setMaxTxPercent external Missing Events No Issue
27 setSwapAndLiquifyEnabled write Missing Events No Issue
28 _reflectFee write Passed No Issue
29 _getValues read Passed No Issue
30 _getTValues read Passed No Issue
31 _getRValues write Passed No Issue
32 _getRate read Passed No Issue
33 _getCurrentSupply read Passed No Issue
34 _takeLiquidity write Passed No Issue
35 calculateTaxFee read Passed No Issue
36 calculateLiquidityFee read Passed No Issue
37 removeAllFee write Passed No Issue
38 restoreAllFee write Passed No Issue
39 isExcludedFromFee read Passed No Issue
40 _approve write Passed No Issue
41 _transfer write Passed No Issue
42 swapAndLiquify write Passed No Issue



43 swapTokensForEth write Passed No Issue
44 addLiquidity write Centralized risk

in addLiquidity
Refer Audit

Findings
45 _tokenTransfer write Passed No Issue
46 _transferBothExcluded write Passed No Issue
47 _transferStandard write Passed No Issue
48 _transferToExcluded write Passed No Issue
49 _transferFromExcluded write Passed No Issue
50 owner read Passed No Issue
51 onlyOwner modifier Passed No Issue
52 renounceOwnership write access only

Owner
No Issue

53 transferOwnership write access only
Owner

No Issue

54 geUnlockTime read Passed No Issue
55 lock write access only

Owner
No Issue

56 unlock write Ownership can
be regained

Refer Audit
Findings

57 _msgSender internal Passed No Issue
58 _msgData internal Passed No Issue



Severity Definitions
Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to token loss etc.
High-level  vulnerabilities  are  difficult  to  exploit;

High however,  they  also  have  significant  impact  on smart
contract  execution,  e.g.  public  access  to  crucial
functions

Medium Medium-level  vulnerabilities  are  important  to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.



Low

(1) Infinite loop possibility:

If there are so many excluded wallets, then this logic will fail, as it might hit the block’s gas

limit. If there are very limited exceptions, then this will work, but will cost more gas.

Resolution: We suggest excluding limited wallets only.

(2) Make variables constant:

Following variables will be unchanged. So, please make it constant. It will save some gas.

● name

● symbol

● decimals

Resolution: Declare those variables as constant. Just put a constant keyword.



(3) Possible to gain ownership after renouncing the contract ownership. Owner can

renounce ownership and make contract without owner but he can regain ownership by

following the steps below:

● Owner calls the lock function in contract to set the current owner as

_previousOwner.

● Owner calls unlock to unlock contract and set _owner = _previousOwner.

● Owner called renounceOwnership to leave the contract without the owner.

● Owner calls unlock to regain ownership.

Resolution: We suggest removing these lock/unlock functions as this seems not serving a

great purpose. Otherwise, always renounce ownership first before calling the lock function.

(4) Centralized risk in addLiquidity:

In addLiquidityETH function, the owner gets DTM Tokens from the Pool. If the private key

of the owner's wallet is compromised, then it will create a problem.

Resolution: Ideally this can be a governance smart contract. On another hand, the owner

can accept this risk and handle the private key very securely.

.



(5) Missing Events:

Missing Events log for some functions:

● excludeFromFee

● excludeFromReward

● includeInFee

● includeInReward

● setLiquidityFeePercent

● setMaxTxPercent

● setTaxFeePercent

● setSwapAndLiquifyEnabled

Very Low / Discussion / Best practices:

(1) Use latest solidity version:

Using the latest solidity will prevent any compiler level bugs.

Resolution: Please use 0.8.5 which is the latest version.

(2) external instead of public:

If any function is not called from inside the smart contract, then it is better to declare it as

external instead of public. As it saves some gas as well.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best

-practices



Centralization
This smart contract has some functions which can be executed by Admin (Owner) only. If

the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● updateRouter: Owner can Create a uniswap pair for this new token.

● updateTokenLimit: The Owner can change the number of tokens required to trigger

Swap.

● excludeFromReward: Owner can check if the account is excluded or not.

● includeInReward: Owner can check includeInReward.

● excludeFromFee: Owner can check if the account is excludedFee or not.

● includeInFee: Owner can check includeInFee.

● setTaxFeePercent: Owner can set Tax Fee Percent.

● setLiquidityFeePercent: Owner can set Liquidity Fee Percent.

● setMaxTxPercent: Owner can set Max Tx Percent.

● setSwapAndLiquifyEnabled: Owner can set Swap And Liquify Enabled.



Conclusion

We were given a contract code. And we have used all possible tests based on given

objects as files. We observed some issues in the smart contracts and those are

fixed/acknowledged in the smart contracts. So it is good to go for the production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high level description of functionality was presented in

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is “
Secured”.



Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.



Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.



Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.



Appendix
Code Flow Diagram - DegeThal Token



Slither Results Log

Slither log >> DeGeThal.sol

INFO:Detectors:
DeGeThal.addLiquidity(uint256,uint256) (DeGeThal.sol#1071-1084) sends eth to arbitrary user

Dangerous calls:
- uniswapV2Router.addLiquidityETH{value:

ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#functions-that-send-ether-to-arbitrary-destinatio
ns
INFO:Detectors:
Reentrancy in DeGeThal._transfer(address,address,uint256) (DeGeThal.sol#985-1028):

External calls:
- swapAndLiquify(contractTokenBalance) (DeGeThal.sol#1015)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

-
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,path,address(t
his),block.timestamp) (DeGeThal.sol#1062-1068)

External calls sending eth:
- swapAndLiquify(contractTokenBalance) (DeGeThal.sol#1015)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

State variables written after the call(s):
- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)

- _rOwned[address(this)] = _rOwned[address(this)].add(rLiquidity) (DeGeThal.sol#941)
- _rOwned[sender] = _rOwned[sender].sub(rAmount) (DeGeThal.sol#1120)
- _rOwned[sender] = _rOwned[sender].sub(rAmount) (DeGeThal.sol#1129)
- _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount) (DeGeThal.sol#1121)
- _rOwned[sender] = _rOwned[sender].sub(rAmount) (DeGeThal.sol#1110)
- _rOwned[sender] = _rOwned[sender].sub(rAmount) (DeGeThal.sol#1140)
- _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount) (DeGeThal.sol#1141)
- _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount) (DeGeThal.sol#1131)
- _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount) (DeGeThal.sol#1112)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
- _rTotal = _rTotal.sub(rFee) (DeGeThal.sol#896)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
- _tOwned[address(this)] = _tOwned[address(this)].add(tLiquidity) (DeGeThal.sol#943)
- _tOwned[sender] = _tOwned[sender].sub(tAmount) (DeGeThal.sol#1139)
- _tOwned[sender] = _tOwned[sender].sub(tAmount) (DeGeThal.sol#1109)
- _tOwned[recipient] = _tOwned[recipient].add(tTransferAmount) (DeGeThal.sol#1130)
- _tOwned[recipient] = _tOwned[recipient].add(tTransferAmount) (DeGeThal.sol#1111)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities
INFO:Detectors:
DeGeThal.addLiquidity(uint256,uint256) (DeGeThal.sol#1071-1084) ignores return value by
uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return
INFO:Detectors:
DeGeThal.allowance(address,address).owner (DeGeThal.sol#783) shadows:

- Ownable.owner() (DeGeThal.sol#416-418) (function)
DeGeThal._approve(address,address,uint256).owner (DeGeThal.sol#977) shadows:

- Ownable.owner() (DeGeThal.sol#416-418) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
Reentrancy in DeGeThal._transfer(address,address,uint256) (DeGeThal.sol#985-1028):

External calls:
- swapAndLiquify(contractTokenBalance) (DeGeThal.sol#1015)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)



-
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,path,address(t
his),block.timestamp) (DeGeThal.sol#1062-1068)

External calls sending eth:
- swapAndLiquify(contractTokenBalance) (DeGeThal.sol#1015)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

State variables written after the call(s):
- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)

- _liquidityFee = _previousLiquidityFee (DeGeThal.sol#970)
- _liquidityFee = 0 (DeGeThal.sol#965)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
- _previousLiquidityFee = _liquidityFee (DeGeThal.sol#962)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
- _previousTaxFee = _taxFee (DeGeThal.sol#961)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
- _tFeeTotal = _tFeeTotal.add(tFee) (DeGeThal.sol#897)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
- _taxFee = _previousTaxFee (DeGeThal.sol#969)
- _taxFee = 0 (DeGeThal.sol#964)

Reentrancy in DeGeThal.constructor() (DeGeThal.sol#723-739):
External calls:
- uniswapV2Pair =

IUniswapV2Factory(_uniswapV2Router.factory()).createPair(address(this),_uniswapV2Router.WETH())
(DeGeThal.sol#728-729)

State variables written after the call(s):
- _isExcludedFromFee[owner()] = true (DeGeThal.sol#735)
- _isExcludedFromFee[address(this)] = true (DeGeThal.sol#736)
- uniswapV2Router = _uniswapV2Router (DeGeThal.sol#732)

Reentrancy in DeGeThal.swapAndLiquify(uint256) (DeGeThal.sol#1030-1051):
External calls:
- swapTokensForEth(half) (DeGeThal.sol#1042)

-
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,path,address(t
his),block.timestamp) (DeGeThal.sol#1062-1068)

- addLiquidity(otherHalf,newBalance) (DeGeThal.sol#1048)
- uniswapV2Router.addLiquidityETH{value:

ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)
External calls sending eth:
- addLiquidity(otherHalf,newBalance) (DeGeThal.sol#1048)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

State variables written after the call(s):
- addLiquidity(otherHalf,newBalance) (DeGeThal.sol#1048)

- _allowances[owner][spender] = amount (DeGeThal.sol#981)
Reentrancy in DeGeThal.transferFrom(address,address,uint256) (DeGeThal.sol#792-796):

External calls:
- _transfer(sender,recipient,amount) (DeGeThal.sol#793)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

-
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,path,address(t
his),block.timestamp) (DeGeThal.sol#1062-1068)

External calls sending eth:
- _transfer(sender,recipient,amount) (DeGeThal.sol#793)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

State variables written after the call(s):
- _approve(sender,_msgSender(),_allowances[sender][_msgSender()].sub(amount,ERC20: transfer

amount exceeds allowance)) (DeGeThal.sol#794)
- _allowances[owner][spender] = amount (DeGeThal.sol#981)

Reentrancy in DeGeThal.updateRouter(address) (DeGeThal.sol#741-749):
External calls:



- uniswapV2Pair =
IUniswapV2Factory(_uniswapV2Router.factory()).createPair(address(this),_uniswapV2Router.WETH())
(DeGeThal.sol#744-745)

State variables written after the call(s):
- uniswapV2Router = _uniswapV2Router (DeGeThal.sol#748)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in DeGeThal._transfer(address,address,uint256) (DeGeThal.sol#985-1028):

External calls:
- swapAndLiquify(contractTokenBalance) (DeGeThal.sol#1015)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

-
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,path,address(t
his),block.timestamp) (DeGeThal.sol#1062-1068)

External calls sending eth:
- swapAndLiquify(contractTokenBalance) (DeGeThal.sol#1015)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

Event emitted after the call(s):
- Transfer(sender,recipient,tTransferAmount) (DeGeThal.sol#1124)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
- Transfer(sender,recipient,tTransferAmount) (DeGeThal.sol#1144)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
- Transfer(sender,recipient,tTransferAmount) (DeGeThal.sol#1134)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
- Transfer(sender,recipient,tTransferAmount) (DeGeThal.sol#1115)

- _tokenTransfer(from,to,amount,takeFee) (DeGeThal.sol#1027)
Reentrancy in DeGeThal.constructor() (DeGeThal.sol#723-739):

External calls:
- uniswapV2Pair =

IUniswapV2Factory(_uniswapV2Router.factory()).createPair(address(this),_uniswapV2Router.WETH())
(DeGeThal.sol#728-729)

Event emitted after the call(s):
- Transfer(address(0),_msgSender(),_tTotal) (DeGeThal.sol#738)

Reentrancy in DeGeThal.swapAndLiquify(uint256) (DeGeThal.sol#1030-1051):
External calls:
- swapTokensForEth(half) (DeGeThal.sol#1042)

-
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,path,address(t
his),block.timestamp) (DeGeThal.sol#1062-1068)

- addLiquidity(otherHalf,newBalance) (DeGeThal.sol#1048)
- uniswapV2Router.addLiquidityETH{value:

ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)
External calls sending eth:
- addLiquidity(otherHalf,newBalance) (DeGeThal.sol#1048)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

Event emitted after the call(s):
- Approval(owner,spender,amount) (DeGeThal.sol#982)

- addLiquidity(otherHalf,newBalance) (DeGeThal.sol#1048)
- SwapAndLiquify(half,newBalance,otherHalf) (DeGeThal.sol#1050)

Reentrancy in DeGeThal.transferFrom(address,address,uint256) (DeGeThal.sol#792-796):
External calls:
- _transfer(sender,recipient,amount) (DeGeThal.sol#793)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

-
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount,0,path,address(t
his),block.timestamp) (DeGeThal.sol#1062-1068)

External calls sending eth:
- _transfer(sender,recipient,amount) (DeGeThal.sol#793)

- uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp) (DeGeThal.sol#1076-1083)

Event emitted after the call(s):



- Approval(owner,spender,amount) (DeGeThal.sol#982)
- _approve(sender,_msgSender(),_allowances[sender][_msgSender()].sub(amount,ERC20:

transfer amount exceeds allowance)) (DeGeThal.sol#794)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Ownable.unlock() (DeGeThal.sol#463-468) uses timestamp for comparisons

Dangerous comparisons:
- require(bool,string)(now > _lockTime,Contract is locked until 7 days) (DeGeThal.sol#465)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Address.isContract(address) (DeGeThal.sol#268-277) uses assembly

- INLINE ASM (DeGeThal.sol#275)
Address._functionCallWithValue(address,bytes,uint256,string) (DeGeThal.sol#361-382) uses assembly

- INLINE ASM (DeGeThal.sol#374-377)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
Address._functionCallWithValue(address,bytes,uint256,string) (DeGeThal.sol#361-382) is never used and
should be removed
Address.functionCall(address,bytes) (DeGeThal.sol#321-323) is never used and should be removed
Address.functionCall(address,bytes,string) (DeGeThal.sol#331-333) is never used and should be removed
Address.functionCallWithValue(address,bytes,uint256) (DeGeThal.sol#346-348) is never used and should be
removed
Address.functionCallWithValue(address,bytes,uint256,string) (DeGeThal.sol#356-359) is never used and
should be removed
Address.isContract(address) (DeGeThal.sol#268-277) is never used and should be removed
Address.sendValue(address,uint256) (DeGeThal.sol#295-301) is never used and should be removed
Context._msgData() (DeGeThal.sol#240-243) is never used and should be removed
SafeMath.mod(uint256,uint256) (DeGeThal.sol#213-215) is never used and should be removed
SafeMath.mod(uint256,uint256,string) (DeGeThal.sol#229-232) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
DeGeThal._rTotal (DeGeThal.sol#687) is set pre-construction with a non-constant function or state variable:

- (MAX - (MAX % _tTotal))
DeGeThal._previousTaxFee (DeGeThal.sol#695) is set pre-construction with a non-constant function or state
variable:

- _taxFee
DeGeThal._previousLiquidityFee (DeGeThal.sol#698) is set pre-construction with a non-constant function or
state variable:

- _liquidityFee
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializing-state-variables
INFO:Detectors:
Low level call in Address.sendValue(address,uint256) (DeGeThal.sol#295-301):

- (success) = recipient.call{value: amount}() (DeGeThal.sol#299)
Low level call in Address._functionCallWithValue(address,bytes,uint256,string) (DeGeThal.sol#361-382):

- (success,returndata) = target.call{value: weiValue}(data) (DeGeThal.sol#365)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Function IUniswapV2Pair.DOMAIN_SEPARATOR() (DeGeThal.sol#502) is not in mixedCase
Function IUniswapV2Pair.PERMIT_TYPEHASH() (DeGeThal.sol#503) is not in mixedCase
Function IUniswapV2Pair.MINIMUM_LIQUIDITY() (DeGeThal.sol#520) is not in mixedCase
Function IUniswapV2Router01.WETH() (DeGeThal.sol#540) is not in mixedCase
Parameter DeGeThal.updateRouter(address)._newDexAddress (DeGeThal.sol#741) is not in mixedCase
Parameter DeGeThal.setSwapAndLiquifyEnabled(bool)._enabled (DeGeThal.sol#887) is not in mixedCase
Parameter DeGeThal.calculateTaxFee(uint256)._amount (DeGeThal.sol#946) is not in mixedCase
Parameter DeGeThal.calculateLiquidityFee(uint256)._amount (DeGeThal.sol#952) is not in mixedCase
Variable DeGeThal._taxFee (DeGeThal.sol#694) is not in mixedCase
Variable DeGeThal._liquidityFee (DeGeThal.sol#697) is not in mixedCase
Variable DeGeThal._maxTxAmount (DeGeThal.sol#706) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
Redundant expression "this (DeGeThal.sol#241)" inContext (DeGeThal.sol#235-244)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
INFO:Detectors:



Variable
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint256).amoun
tADesired (DeGeThal.sol#545) is too similar to
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint256).amoun
tBDesired (DeGeThal.sol#546)
Variable DeGeThal._transferBothExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1108)
is too similar to DeGeThal._transferStandard(address,address,uint256).tTransferAmount
(DeGeThal.sol#1119)
Variable DeGeThal._getRValues(uint256,uint256,uint256,uint256).rTransferAmount (DeGeThal.sol#917) is
too similar to DeGeThal._transferBothExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1108)
Variable DeGeThal._getRValues(uint256,uint256,uint256,uint256).rTransferAmount (DeGeThal.sol#917) is
too similar to DeGeThal._getValues(uint256).tTransferAmount (DeGeThal.sol#901)
Variable DeGeThal._transferStandard(address,address,uint256).rTransferAmount (DeGeThal.sol#1119) is
too similar to DeGeThal._getValues(uint256).tTransferAmount (DeGeThal.sol#901)
Variable DeGeThal._getRValues(uint256,uint256,uint256,uint256).rTransferAmount (DeGeThal.sol#917) is
too similar to DeGeThal._transferStandard(address,address,uint256).tTransferAmount (DeGeThal.sol#1119)
Variable DeGeThal._transferStandard(address,address,uint256).rTransferAmount (DeGeThal.sol#1119) is
too similar to DeGeThal._transferStandard(address,address,uint256).tTransferAmount (DeGeThal.sol#1119)
Variable DeGeThal._transferBothExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1108)
is too similar to DeGeThal._transferBothExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1108)
Variable DeGeThal._transferBothExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1108)
is too similar to DeGeThal._transferFromExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1138)
Variable DeGeThal._transferFromExcluded(address,address,uint256).rTransferAmount
(DeGeThal.sol#1138) is too similar to
DeGeThal._transferBothExcluded(address,address,uint256).tTransferAmount (DeGeThal.sol#1108)
Variable DeGeThal._transferFromExcluded(address,address,uint256).rTransferAmount
(DeGeThal.sol#1138) is too similar to
DeGeThal._transferFromExcluded(address,address,uint256).tTransferAmount (DeGeThal.sol#1138)
Variable DeGeThal._getRValues(uint256,uint256,uint256,uint256).rTransferAmount (DeGeThal.sol#917) is
too similar to DeGeThal._transferFromExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1138)
Variable DeGeThal._transferStandard(address,address,uint256).rTransferAmount (DeGeThal.sol#1119) is
too similar to DeGeThal._transferBothExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1108)
Variable DeGeThal._transferStandard(address,address,uint256).rTransferAmount (DeGeThal.sol#1119) is
too similar to DeGeThal._transferFromExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1138)
Variable DeGeThal.reflectionFromToken(uint256,bool).rTransferAmount (DeGeThal.sol#831) is too similar to
DeGeThal._getValues(uint256).tTransferAmount (DeGeThal.sol#901)
Variable DeGeThal.reflectionFromToken(uint256,bool).rTransferAmount (DeGeThal.sol#831) is too similar to
DeGeThal._transferBothExcluded(address,address,uint256).tTransferAmount (DeGeThal.sol#1108)
Variable DeGeThal.reflectionFromToken(uint256,bool).rTransferAmount (DeGeThal.sol#831) is too similar to
DeGeThal._transferFromExcluded(address,address,uint256).tTransferAmount (DeGeThal.sol#1138)
Variable DeGeThal.reflectionFromToken(uint256,bool).rTransferAmount (DeGeThal.sol#831) is too similar to
DeGeThal._transferStandard(address,address,uint256).tTransferAmount (DeGeThal.sol#1119)
Variable DeGeThal._transferToExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1128) is
too similar to DeGeThal._transferStandard(address,address,uint256).tTransferAmount (DeGeThal.sol#1119)
Variable DeGeThal.reflectionFromToken(uint256,bool).rTransferAmount (DeGeThal.sol#831) is too similar to
DeGeThal._getTValues(uint256).tTransferAmount (DeGeThal.sol#909)
Variable DeGeThal._getValues(uint256).rTransferAmount (DeGeThal.sol#902) is too similar to
DeGeThal._getValues(uint256).tTransferAmount (DeGeThal.sol#901)
Variable DeGeThal._getRValues(uint256,uint256,uint256,uint256).rTransferAmount (DeGeThal.sol#917) is
too similar to DeGeThal._transferToExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1128)
Variable DeGeThal._transferStandard(address,address,uint256).rTransferAmount (DeGeThal.sol#1119) is
too similar to DeGeThal._transferToExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1128)
Variable DeGeThal._getValues(uint256).rTransferAmount (DeGeThal.sol#902) is too similar to
DeGeThal._getTValues(uint256).tTransferAmount (DeGeThal.sol#909)
Variable DeGeThal._transferStandard(address,address,uint256).rTransferAmount (DeGeThal.sol#1119) is
too similar to DeGeThal._getTValues(uint256).tTransferAmount (DeGeThal.sol#909)



Variable DeGeThal.reflectionFromToken(uint256,bool).rTransferAmount (DeGeThal.sol#831) is too similar to
DeGeThal._transferToExcluded(address,address,uint256).tTransferAmount (DeGeThal.sol#1128)
Variable DeGeThal._getValues(uint256).rTransferAmount (DeGeThal.sol#902) is too similar to
DeGeThal._transferBothExcluded(address,address,uint256).tTransferAmount (DeGeThal.sol#1108)
Variable DeGeThal._getValues(uint256).rTransferAmount (DeGeThal.sol#902) is too similar to
DeGeThal._transferFromExcluded(address,address,uint256).tTransferAmount (DeGeThal.sol#1138)
Variable DeGeThal._getValues(uint256).rTransferAmount (DeGeThal.sol#902) is too similar to
DeGeThal._transferToExcluded(address,address,uint256).tTransferAmount (DeGeThal.sol#1128)
Variable DeGeThal._getValues(uint256).rTransferAmount (DeGeThal.sol#902) is too similar to
DeGeThal._transferStandard(address,address,uint256).tTransferAmount (DeGeThal.sol#1119)
Variable DeGeThal._transferBothExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1108)
is too similar to DeGeThal._getValues(uint256).tTransferAmount (DeGeThal.sol#901)
Variable DeGeThal._transferFromExcluded(address,address,uint256).rTransferAmount
(DeGeThal.sol#1138) is too similar to DeGeThal._getValues(uint256).tTransferAmount (DeGeThal.sol#901)
Variable DeGeThal._transferFromExcluded(address,address,uint256).rTransferAmount
(DeGeThal.sol#1138) is too similar to
DeGeThal._transferStandard(address,address,uint256).tTransferAmount (DeGeThal.sol#1119)
Variable DeGeThal._transferFromExcluded(address,address,uint256).rTransferAmount
(DeGeThal.sol#1138) is too similar to DeGeThal._getTValues(uint256).tTransferAmount (DeGeThal.sol#909)
Variable DeGeThal._transferBothExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1108)
is too similar to DeGeThal._getTValues(uint256).tTransferAmount (DeGeThal.sol#909)
Variable DeGeThal._transferToExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1128) is
too similar to DeGeThal._getTValues(uint256).tTransferAmount (DeGeThal.sol#909)
Variable DeGeThal._transferToExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1128) is
too similar to DeGeThal._transferBothExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1108)
Variable DeGeThal._transferToExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1128) is
too similar to DeGeThal._transferFromExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1138)
Variable DeGeThal._transferToExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1128) is
too similar to DeGeThal._getValues(uint256).tTransferAmount (DeGeThal.sol#901)
Variable DeGeThal._transferBothExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1108)
is too similar to DeGeThal._transferToExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1128)
Variable DeGeThal._transferFromExcluded(address,address,uint256).rTransferAmount
(DeGeThal.sol#1138) is too similar to
DeGeThal._transferToExcluded(address,address,uint256).tTransferAmount (DeGeThal.sol#1128)
Variable DeGeThal._transferToExcluded(address,address,uint256).rTransferAmount (DeGeThal.sol#1128) is
too similar to DeGeThal._transferToExcluded(address,address,uint256).tTransferAmount
(DeGeThal.sol#1128)
Variable DeGeThal._getRValues(uint256,uint256,uint256,uint256).rTransferAmount (DeGeThal.sol#917) is
too similar to DeGeThal._getTValues(uint256).tTransferAmount (DeGeThal.sol#909)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-are-too-similar
INFO:Detectors:
DeGeThal.slitherConstructorVariables() (DeGeThal.sol#673-1148) uses literals with too many digits:

- _maxTxAmount = 500000 * 10 ** 18 (DeGeThal.sol#706)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
DeGeThal._decimals (DeGeThal.sol#692) should be constant
DeGeThal._name (DeGeThal.sol#690) should be constant
DeGeThal._symbol (DeGeThal.sol#691) should be constant
DeGeThal._tTotal (DeGeThal.sol#686) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-constant
INFO:Detectors:
renounceOwnership() should be declared external:

- Ownable.renounceOwnership() (DeGeThal.sol#435-438)
transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address) (DeGeThal.sol#444-448)
geUnlockTime() should be declared external:

- Ownable.geUnlockTime() (DeGeThal.sol#450-452)
lock(uint256) should be declared external:

- Ownable.lock(uint256) (DeGeThal.sol#455-460)
unlock() should be declared external:

- Ownable.unlock() (DeGeThal.sol#463-468)



updateTokenLimit(uint256) should be declared external:
- DeGeThal.updateTokenLimit(uint256) (DeGeThal.sol#752-755)

name() should be declared external:
- DeGeThal.name() (DeGeThal.sol#757-759)

symbol() should be declared external:
- DeGeThal.symbol() (DeGeThal.sol#761-763)

decimals() should be declared external:
- DeGeThal.decimals() (DeGeThal.sol#765-767)

totalSupply() should be declared external:
- DeGeThal.totalSupply() (DeGeThal.sol#769-771)

transfer(address,uint256) should be declared external:
- DeGeThal.transfer(address,uint256) (DeGeThal.sol#778-781)

allowance(address,address) should be declared external:
- DeGeThal.allowance(address,address) (DeGeThal.sol#783-785)

approve(address,uint256) should be declared external:
- DeGeThal.approve(address,uint256) (DeGeThal.sol#787-790)

transferFrom(address,address,uint256) should be declared external:
- DeGeThal.transferFrom(address,address,uint256) (DeGeThal.sol#792-796)

increaseAllowance(address,uint256) should be declared external:
- DeGeThal.increaseAllowance(address,uint256) (DeGeThal.sol#798-801)

decreaseAllowance(address,uint256) should be declared external:
- DeGeThal.decreaseAllowance(address,uint256) (DeGeThal.sol#803-806)

isExcludedFromReward(address) should be declared external:
- DeGeThal.isExcludedFromReward(address) (DeGeThal.sol#808-810)

totalFees() should be declared external:
- DeGeThal.totalFees() (DeGeThal.sol#812-814)

deliver(uint256) should be declared external:
- DeGeThal.deliver(uint256) (DeGeThal.sol#816-823)

reflectionFromToken(uint256,bool) should be declared external:
- DeGeThal.reflectionFromToken(uint256,bool) (DeGeThal.sol#825-834)

excludeFromReward(address) should be declared external:
- DeGeThal.excludeFromReward(address) (DeGeThal.sol#842-850)

excludeFromFee(address) should be declared external:
- DeGeThal.excludeFromFee(address) (DeGeThal.sol#865-867)

includeInFee(address) should be declared external:
- DeGeThal.includeInFee(address) (DeGeThal.sol#869-871)

setSwapAndLiquifyEnabled(bool) should be declared external:
- DeGeThal.setSwapAndLiquifyEnabled(bool) (DeGeThal.sol#887-890)

isExcludedFromFee(address) should be declared external:
- DeGeThal.isExcludedFromFee(address) (DeGeThal.sol#973-975)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-external
INFO:Slither:DeGeThal.sol analyzed (10 contracts with 75 detectors), 117 result(s) found
INFO:Slither:Use https://crytic.io/ to get access to additional detectors and Github integration




