

SMART CONTRACT AUDIT REPORT

For

Dapp Stats (Order #13SEP2019)

Prepared By: Yogesh Padsala Prepared For: Dapp Stats

Prepared on: 13/09/2019 https://www.dappstats.com

audit@etherauthority.io

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Very low severity vulnerabilities found in the contract

9. Gas Optimization Discussion

10. Discussions and improvements

11. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has following smart contract code:

● https://rinkeby.etherscan.io/address/0x4c376c5e17f1ed1b6bf543587c6

2832f42668b86#code

It contains approx 230 lines of Solidity code. All the functions and state

variables are not well commented using netscape style, but that does not raise

any vulnerability. But it would increase readability.

The audit was performed by two senior solidity auditors at EtherAuthority. The

team has extensive work experience in developing and auditing the smart

contracts.

This audit procedure also included the use of automated software to further

scan of the code to identify potential issues:

For example:

https://tool.smartdec.net/scan/814042953a55487dac4ef09cf2de4fc8

https://mythx.io tool provided as remix.ethereum.org plugin

EtherAuthority Limited (www.EtherAuthority.io)

https://mythx.io/

Quick Stats:

Main Category Subcategory Result

Contract

Programming

Solidity version not specified Passed

Solidity version is old Not Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Not Passed

Other programming issues Passed

Code

Specification

Visibility not explicitly declared Moderated

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas

Optimization

Assert() misuse Passed

EtherAuthority Limited (www.EtherAuthority.io)

Possibly High consumption ‘for/while’ loop Not Passed

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set N/A

“Short Address” Attack Passed

“Double Spend” Attack Passed

Overall Audit Result: NOT PASSED

EtherAuthority Limited (www.EtherAuthority.io)

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks on

the code. Some of those are as below:

3.1: Over and under flows

SafeMath library is used in the contract, which prevented the possibility of

overflow and underflow attacks.

3.2: Short address attack

Although this contract is not vulnerable to this attack, it is highly

recommended to call functions after checking the validity of the address from

the outside client.

3.3: Visibility & Delegatecall

Delegatecall is not used in the contract thus it does not have this vulnerability.

And visibility is also used properly except 2 places.

3.4: Reentrancy / TheDAO hack

Use of “require” function and Checks-Effects-Interactions pattern in this smart

contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DoS)

There is No any process consuming loops in the contracts which can be used

for DoS attacks. and thus this contract is not prone to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Checks-Effects-Interactions pattern
While transferring ether, this contract does all the process first and then

transfers them. The same while doing other process too. This is very good

practice which prevents malicious possibility. For example: withdraw()

function.

4.2 Functions input parameters passed
The functions in this contract verifies the validity of the input parameters, and

this validations cannot be by-passed in anyway.

4.3 Conditions validations

The use of SafeMath library is a good programming flow.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contr

acts/math/SafeMath.sol

EtherAuthority Limited (www.EtherAuthority.io)

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

5.1 Un-scalable for loops

This type of active dividend distribution does not work when more users freeze

their tokens. Because when users increases, then it will give timeout error or

block gas limit reached error.

Resolution:

Implement passive dividend distribution. Basic programming flow can be:

=> we can think of a logic in which owner distributes dividend daily.. and it just

added to a variable (dividend pool) and also updated other variables like time.

=> Then we create ‘view’ function for users to see how much dividend

available to them and we calculate it dynamically from dividend variables and

how many previous withdrawals user did and also share percentage of token

frozen.

=> create a withdraw function for users to withdraw dividend if they have any

positive amount. this will also update totalDividendWithdrawn variable so that

users can not withdraw again and again.

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

=> No Medium severity vulnerabilities found

EtherAuthority Limited (www.EtherAuthority.io)

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Compiler version can be fixed

The contract has lower solidity version than the current one. This version gap is

quite high in contract and there were many improvements afterwards.

So, it is good practice to deploy the contract having latest solidity version. The

solidity version at a time of audit is: 0.5.11

7.2: Sending ownership to incorrect address as human error

This does not happen always. But we have seen some cases (even our personal

experiences) that we send ownership to incorrect address in rush or by

mistake. and it will make the entire contract useless.

Solution is to implement logic where new owner has to accept ownership in

order to take ownership transfer take place.

8. Very low severity vulnerabilities found

The presence of these things does not make any negative effect. But just to

clean up the code.

8.1: No explicit visibility - AbleTokenSale contract

Visibility is not specified at line #93, #94. Please note that this is not a big issue

as it takes default to “public”. But it's suggested to explicitly define visibility to

avoid confusion.

EtherAuthority Limited (www.EtherAuthority.io)

9. Gas Optimization Discussion

9.1: Extra gas consumption in for loop

While using array.length in loop, it cost more gas than defining array length in

a variable and then use it. Because it reads from the storage every loop

iteration.

10. Discussions and improvements

10.1 Consider adding Safeguard function

In any unexpected events, owner of the contract can put safeguard (halt token

movement). Once the problem is resolved, then the owner can lift the

safeguard and everything comes back to normal.

10.2 Double calls to users to freeze tokens

In current token freeze implementation, user have to approve before freezing

tokens. so in GUI, user will have to approve two authentication alerts from

metamask (if it is implemented that way).

If this freeze/unfreeze functions to be added in token contract (if that is still

possible) then we can implement logic in which users do not have to call this

approve or anything. so only one call freeze to token contract will do the

things.. so no double calls to freeze tokens.

EtherAuthority Limited (www.EtherAuthority.io)

11. Summary of the Audit

Overall, the code is dividend distribution (active) and Compiler showed couple

of warnings, as below:

Now, we checked that the warnings in purple division, are due to their static

analysis, which includes like gas estimations and all. So, it is important to

supply correct gas values while calling various functions.

Those warnings can be safely ignored as should be taken care while calling the

smart contract functions.

Please try to check the address and value of token externally before sending to

the solidity code.

It is also encouraged to run bug bounty program and let community help to

further polish the code to perfection.

EtherAuthority Limited (www.EtherAuthority.io)

