
Project: Changeblock Protocol
Website: changeblock.com
Platform: Polygon Network
Language: Solidity
Date: July 5th, 2022

https://www.changeblock.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..7

Technical Quick Stats …..……………………………………………………………………… 8

Code Quality ……………………………………………………………………………………. 9

Documentation ………………………………………………………………………………….. 9

Use of Dependencies …………………………………………………………………………… 9

AS-IS overview ………………………………………………………………………………….. 10

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 20

Our Methodology ………………………………………………………………………………... 21

Disclaimers ………………………………………………………………………………………. 23

Appendix

● Code Flow Diagram ……………………………………………………………………... 24

● Slither Results Log ………………………………………………………………………. 31

● Solidity static analysis ….……………………………………………………………….. 36

● Solhint Linter …………………………………………………………………….……….. 46

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Changeblock Protocol to perform the Security audit of
the Changeblock Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on July 5th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Changeblock Protocol is a smart contract having functions like: mint, burn, withdraw,

rebalance, approve, deploy, etc. The Changeblock Protocol contract inherits the ERC20,

Ownable, IERC20, IERC721 standard smart contracts from the OpenZeppelin library.

These OpenZeppelin contracts are considered community-audited and time-tested, and

hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Changeblock Protocol Smart Contracts

Platform Polygon / Solidity

File 1 ChangeblockMarketplace.sol

File 1 MD5 Hash BC7BCA9F16B05E5DBA3E33EB1A80C6E1

Updated File 1 MD5 Hash 51B24F82AFC5D3757D59FA81DCC65FF1

File 2 CBLKFixed.sol

File 2 MD5 Hash 2BCA918EE75295DDC1C80D4E6AC5CC33

File 3 CBLKUnfixed.sol

File 3 MD5 Hash 2B61141C4DE91B3EBF6FD3E0631664EA

File 4 CBT.sol

File 4 MD5 Hash F91FEB29A263F80BD43C5B7B47326218

File 5 CBTFixedFactory.sol

File 5 MD5 Hash 62BC9E07FEFE48AB4267E73A01DA926D

File 6 CBTUnfixedFactory.sol

File 6 MD5 Hash 1B990FF508FF3498E877581EFFC5844F

File 7 CBTFactory.sol

File 7 MD5 Hash 8E1BA286D7032838DA4981C985B91FA1

Audit Date July 5th,2022

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 ChangeblockMarketplace.sol
● ChangeblockMarketplace can represent one or more

ERC20 tokens listed for-sale.

● ChangeblockMarketplace has functions like

buyERC20, listERC20, etc.

● Change Block Marketplace to list and purchase

ERC20/ERC721 tokens.

YES, This is valid.

File 2 CBLKFixed.sol
● Name: CBLK

● Symbol: CBLK

● CBLKFixed tokens represent a share of an underlying

index of CBTs.

YES, This is valid.

File 3 CBLKUnfixed.sol
● Name: CBLK

● Symbol: CBLK

● CBLKUnfixed tokens represents a share of an index

of CBTs curated by an owner.

YES, This is valid.

File 4 CBT.sol
● Name: CBT

● Symbol: CBT

YES, This is valid.

File 5 CBTFixedFactory.sol
● CBLKFixedFactory has functions like: approve, etc.

YES, This is valid.

File 6 CBTUnfixedFactory.sol
● CBLKUnfixedFactory has functions like: approve, etc.

YES, This is valid.

File 7 CBTFactory.sol
● CBTFactory has functions like: approve, deploy.

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 1 critical, 0 high, 1 medium and 2 low and some very low level issues.
All the major issues have been fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 7 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Changeblock Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Changeblock Protocol.

The Changeblock team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a Changeblock Protocol smart contract code in the form of a file. The hash

of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website www.changeblock.com which

provided rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://www.changeblock.com/

AS-IS overview

ChangeblockMarketplace.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 getListing read Passed No Issue
8 onlyBuyer modifier Passed No Issue
9 onlySeller modifier Passed No Issue

10 buyERC20 write Seller can bid/buy his
own listing

Refer Audit
Findings

11 buyERC721 write Seller can bid/buy his
own listing

Refer Audit
Findings

12 listERC20 write access only Seller No Issue
13 listERC721 write access only Seller No Issue
14 delistERC20 write Seller can delist

listing after bidder bid
on listing

Refer Audit
Findings

15 delistERC721 write Seller can delist
listing after bidder bid

on listing

Refer Audit
Findings

16 updateERC20Price external Passed No Issue
17 updateERC721Price external Passed No Issue
18 bid write Seller can bid/buy his

own listing
Refer Audit

Findings
19 withdrawBid write Passed No Issue
20 acceptBid write Passed No Issue
21 setSellers write Infinite loops

possibility
Refer Audit

Findings
22 setBuyers write Infinite loops

possibility
Refer Audit

Findings
23 setFeeNumerator external Fee validation,

Critical operation
lacks event log

Refer Audit
Findings

24 setFeeDenominator external Fee validation,
Critical operation
lacks event log

Refer Audit
Findings

25 setBuyerWhitelisting external Critical operation
lacks event log

Refer Audit
Findings

26 _removeBid internal Passed No Issue
CBLKFixed.sol

Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _spendAllowance internal Passed No Issue
18 _beforeTokenTransfer internal Passed No Issue
19 _afterTokenTransfer internal Passed No Issue
20 deposit write Passed No Issue
21 withdraw write Passed No Issue

CBLKUnfixed.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _spendAllowance internal Passed No Issue
18 _beforeTokenTransfer internal Passed No Issue

19 _afterTokenTransfer internal Passed No Issue
20 owner read Passed No Issue
21 onlyOwner modifier Passed No Issue
22 renounceOwnership write access only Owner No Issue
23 transferOwnership write access only Owner No Issue
24 _transferOwnership internal Passed No Issue
25 rebalance external access only Owner No Issue
26 withdraw write Passed No Issue
27 _unregisterToken internal Passed No Issue

CBT.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 name read Passed No Issue
3 symbol read Passed No Issue
4 decimals read Passed No Issue
5 totalSupply read Passed No Issue
6 balanceOf read Passed No Issue
7 transfer write Passed No Issue
8 allowance read Passed No Issue
9 approve write Passed No Issue

10 transferFrom write Passed No Issue
11 increaseAllowance write Passed No Issue
12 decreaseAllowance write Passed No Issue
13 _transfer internal Passed No Issue
14 _mint internal Passed No Issue
15 _burn internal Passed No Issue
16 _approve internal Passed No Issue
17 _spendAllowance internal Passed No Issue
18 _beforeTokenTransfer internal Passed No Issue
19 _afterTokenTransfer internal Passed No Issue
20 owner read Passed No Issue
21 onlyOwner modifier Passed No Issue
22 renounceOwnership write access only Owner No Issue
23 transferOwnership write access only Owner No Issue
24 _transferOwnership internal Passed No Issue
25 mint write Unlimited minting Refer Audit

Findings
26 burn write access only Owner No Issue

CBTFixedFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 approve write access only Owner No Issue
8 deploy write Passed No Issue

CBTUnfixedFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 approve write access only Owner No Issue
8 deploy write Passed No Issue

CBTFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 approve write access only Owner No Issue
8 deploy write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

(1) Transfer amount wrong:- ChangeblockMarketplace.sol

In buyERC721(), function amount transfers to the vendor the listing's price and fees are

also cut from the buyer account. So the buyer has to pay the listing price + fee.

Resolution: We suggest correcting the logic for price calculation, so that buyers just need

to transfer the listing price and fees should be cut from that price only.

Status: Fixed

High Severity

No High severity vulnerabilities were found.

Medium

(1) Fee validation:- ChangeblockMarketplace.sol

The owner can set the fee percentage to 100%. so the vendor cannot get any amount for

his ERC20 and ERC721 Token.

Resolution: We suggest using some maximum limit for fees.

Status: Acknowledged

Low

(1) Seller can delist listing even after bidder bid on listing:ChangeblockMarketplace.sol

There are functions delistERC20() and delistERC721(), In these functions, sellers can

remove listings. but if the bidder, Bid on listing, Then is seller delist listing, So bidder's

token will collect in contract, After that no way to withdraw that token by bidder.

Resolution: This logic will be incorrect, if seller will delist listing in between listing on

public and bidder's bid on Listing, So bidder's token will collect in contract. If this is a part

of the plan then disregard this issue.

(2) Function input parameters lack of check:ChangeblockMarketplace.sol

FEE_DENOMINATOR can be greater than FEE_NUMERATOR.

Resolution: We suggest validating for the FEE_DENOMINATOR and FEE_NUMERATOR

before setting value for them.

Status: Acknowledged

(3) Seller can bid/buy his own listing:ChangeblockMarketplace.sol

Listing creators can bid/buy his own item. This is meaningless.

Resolution: We suggest not allowing the listing creator to bid/buy his own listing. If this is

a part of the plan then disregard this issue.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Assign default value:- ChangeblockMarketplace.sol

All the boolean variables have default as “false”. So, no need to explicitly assign the value.

Although this does not raise any security or logical vulnerability, it is a good practice to

avoid setting empty/default values explicitly.

Resolution: We suggest removing the default assignment.

Status: Fixed

(2) Unused event:- ChangeblockMarketplace.sol

Removal event is defined but not used in code.

Resolution: We suggest removing unused events.

Status: Fixed

(3) Critical operation lacks event log:

Missing event log for:

● setFeeNumerator()

● setFeeDenominator()

● setBuyerWhitelisting()

Resolution: Please write an event log for listed events.

(4) Infinite loops possibility:ChangeblockMarketplace.sol

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

● setSellers() - targets.length.

● setBuyers() - targets.length.

(5) Unlimited minting: CBT.sol

Token minting without any maximum limit is considered inappropriate for tokenomics. We

recommend placing some limit on token minting to mitigate this issue.

Resolution: We suggest setting some limit for mint tokens.

(6) Owner can burn anyone’s tokens: CBT.sol

Only the owner of the tokens is allowed to burn his tokens. But here the contract owner

can burn anyone’s tokens.

Resolution: We suggest confirming the burn functionality.

Centralization
This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● approve: CBTFactory owner can approve target address.

● approve: CBTUnfixedFactory owner can approve target address.

● approve: CBTKFixedFactory owner can approve target address.

● mint: CBT owner can mint an amount of CBT to a user's wallet.

● burn: CBT owners can burn an amount of CBT from a user's wallet.

● rebalance: CBLKUnfixed owner can add or remove CBTs to the CBLK's underlying

tokens.

● setSellers: ChangeblockMarketplace owner can approve account(s) to allow them

to create listings on the platform default is of course unapproved (false).

● setBuyers: ChangeblockMarketplace owner can set buyer whitelisting has been

enabled.

● setFeeNumerator: ChangeblockMarketplace owner can set fee numerator.

● setFeeDenominator: ChangeblockMarketplace owner can set fee denominator.

● setBuyerWhitelisting: ChangeblockMarketplace owner can set buyer whitelisting

address has been enabled.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of a file. And we have used all possible tests

based on given objects as files. We have observed some major issues in the smart

contracts, but those issues have been resolved / acknowledged in the revised code. So,
the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - Changeblock Protocol

ChangeblockMarketplace Diagram

CBLKFixed Diagram

CBLKUnfixed Diagram

CBT Diagram

CBTFixedFactory Diagram

CBTUnfixedFactory Diagram

CBTFactory Diagram

Slither Results Log

Slither log >> ChangeblockMarketplace.sol

Slither log >> CBLKFixed.sol

Slither log >> CBLKUnfixed.sol

Slither log >> CBT.sol

Slither log >> CBTFixedFactory.sol

Slither log >> CBTUnfixedFactory.sol

Slither log >> CBTFactory.sol

Solidity Static Analysis

ChangeblockMarketplace.sol

CBLKFixed.sol

CBLKUnfixed.sol

CBT.sol

CBTFixedFactory.sol

CBTUnfixedFactory.sol

CBTFactory.sol

Solhint Linter

ChangeblockMarketplace.sol

ChangeblockMarketplace.sol:2:1: Error: Compiler version ^0.8.0 does
not satisfy the r semver requirement
ChangeblockMarketplace.sol:5:1: Error: Contract name must be in
CamelCase
ChangeblockMarketplace.sol:6:2: Error: Explicitly mark visibility of
state
ChangeblockMarketplace.sol:11:3: Error: Avoid using inline assembly.
It is acceptable only in rare cases
ChangeblockMarketplace.sol:13:8: Error: Variable "r" is unused
ChangeblockMarketplace.sol:1772:5: Error: Explicitly mark visibility
in function (Set ignoreConstructors to true if using solidity
>=0.7.0)
ChangeblockMarketplace.sol:1874:45: Error: Variable name must be in
mixedCase
ChangeblockMarketplace.sol:1878:46: Error: Variable name must be in
mixedCase
ChangeblockMarketplace.sol:1884:20: Error: Variable name must be in
mixedCase
ChangeblockMarketplace.sol:1885:20: Error: Variable name must be in
mixedCase
ChangeblockMarketplace.sol:1887:5: Error: Explicitly mark visibility
of state
ChangeblockMarketplace.sol:1887:13: Error: Variable name must be in
mixedCase
ChangeblockMarketplace.sol:1889:5: Error: Explicitly mark visibility
of state
ChangeblockMarketplace.sol:1946:49: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:1953:46: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:1963:5: Error: Explicitly mark visibility
in function (Set ignoreConstructors to true if using solidity
>=0.7.0)
ChangeblockMarketplace.sol:1986:41: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:1987:43: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:1993:9: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
ChangeblockMarketplace.sol:2003:41: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:2063:13: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:2065:43: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:2067:9: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.
ChangeblockMarketplace.sol:2078:13: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:2086:64: Error: Use double quotes for

string literals
ChangeblockMarketplace.sol:2093:65: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:2148:64: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:2151:13: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:2156:13: Error: Use double quotes for
string literals
ChangeblockMarketplace.sol:2163:9: Error: Possible reentrancy
vulnerabilities. Avoid state changes after transfer.

CBLKFixed.sol

CBLKFixed.sol:280:18: Error: Parse error: missing ';' at '{'
CBLKFixed.sol:313:18: Error: Parse error: missing ';' at '{'
CBLKFixed.sol:362:18: Error: Parse error: missing ';' at '{'
CBLKFixed.sol:413:22: Error: Parse error: missing ';' at '{'

CBLKUnfixed.sol

CBLKUnfixed.sol:1866:18: Error: Parse error: missing ';' at '{'
CBLKUnfixed.sol:1899:18: Error: Parse error: missing ';' at '{'
CBLKUnfixed.sol:1948:18: Error: Parse error: missing ';' at '{'
CBLKUnfixed.sol:1999:22: Error: Parse error: missing ';' at '{'

CBT.sol

CBT.sol:336:18: Error: Parse error: missing ';' at '{'
CBT.sol:369:18: Error: Parse error: missing ';' at '{'
CBT.sol:418:18: Error: Parse error: missing ';' at '{'
CBT.sol:469:22: Error: Parse error: missing ';' at '{'

CBTFixedFactory.sol

CBTFixedFactory.sol:275:18: Error: Parse error: missing ';' at '{'
CBTFixedFactory.sol:308:18: Error: Parse error: missing ';' at '{'
CBTFixedFactory.sol:357:18: Error: Parse error: missing ';' at '{'
CBTFixedFactory.sol:408:22: Error: Parse error: missing ';' at '{'

CBTUnfixedFactory.sol

CBTUnfixedFactory.sol:1862:18: Error: Parse error: missing ';' at '{'
CBTUnfixedFactory.sol:1895:18: Error: Parse error: missing ';' at '{'
CBTUnfixedFactory.sol:1944:18: Error: Parse error: missing ';' at '{'
CBTUnfixedFactory.sol:1995:22: Error: Parse error: missing ';' at '{'

CBTFactory.sol

CBTFactory.sol:331:18: Error: Parse error: missing ';' at '{'
CBTFactory.sol:364:18: Error: Parse error: missing ';' at '{'
CBTFactory.sol:413:18: Error: Parse error: missing ';' at '{'
CBTFactory.sol:464:22: Error: Parse error: missing ';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

