
Project: CateFarm Token
Website: https://catefarm.io
Platform: Binance Smart Chain
Language: Solidity
Date: April 8th, 2022

https://catefarm.io

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 11

Audit Findings …………………………………………………………………………………… 12

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 29

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the CateFarm team to perform the Security audit of the
CateFarm Token smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on April 8th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
CateFarm is a standard BEP20 token smart contract. This audit only considers the

CateFarm token smart contract, and does not cover any other smart contracts on the

platform.

Audit scope

Name Code Review and Security Analysis Report for
CateFarm Token Smart Contract

Platform BSC / Solidity

File CATEFARM.sol

File MD5 Hash 5FECB6D6D4CC19978765F99E57F4B5E6

Updated File MD5 Hash DB5D499ED0642DBA171C885299ED2A76

Online Code Link 0x5de624fcfd372E34cE0ed6d63519feC04c791c56

Audit Date April 8th, 2022

Revise Audit Date April 14th, 2022

https://testnet.bscscan.com/address/0x5de624fcfd372E34cE0ed6d63519feC04c791c56#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: CateFarm

● Symbol: CATEFARM

● Decimals: 18

● Total Supply: 1 Billion

● Swap Threshold: 0.5 Million

● Swap Amount: 1 Million

● Minimum Tokens for rewards: 50,000

● Maximum Transfer Taxes: 15%

● Maximum Buy Taxes: 15%

● Maximum Sell Taxes: 15%

● Get Maximum Wallet: 1 Billion

● Get Maximum transfer: 1 Billion

● Reflector Gas: 0.75 Million

YES, This is valid.

Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet
securely.

● Ratios:
○ Rewards: 16%

○ Liquidity : 6%

○ Marketing : 2%

○ Team: 2%

○ Total : 26%

YES, This is valid.
Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet
securely.

● Tax Rates:
○ buyFee: 13%

○ sellFee : 13%

○ transfer: 0%

YES, This is valid.
Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet
securely.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 2 low and some very low level issues.
All these issues have been resolved / acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in CateFarm Token are part of its logical algorithm. A library is a different type

of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the CateFarm Token.

The CateFarm Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a CateFarm Token smart contract code in the form of a BSCScan Web

Link.The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website http://catefarm.io/ which provided rich

information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

http://catefarm.io/

AS-IS overview

Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 swapping modifier Passed No Issue
3 onlyOwner modifier Passed No Issue
4 transferOwner external access only Owner No Issue
5 renounceOwnership write access only Owner No Issue
6 receive external Passed No Issue
7 totalSupply external Passed No Issue
8 decimals external Passed No Issue
9 symbol external Passed No Issue

10 getOwner external Passed No Issue
11 name external Passed No Issue
12 balanceOf read Passed No Issue
13 allowance external Passed No Issue
14 approve write Passed No Issue
15 _approve write Passed No Issue
16 approveContractContingency write access only Owner No Issue
17 transfer external Passed No Issue
18 transferFrom external Passed No Issue
19 setBlacklistEnabled external access only Owner No Issue
20 setBlacklistEnabledMultiple external access only Owner No Issue
21 isBlacklisted read Passed No Issue
22 setInitializers external access only Owner No Issue
23 removeSniper external access only Owner No Issue
24 setProtectionSettings external access only Owner No Issue
25 setGasPriceLimit external access only Owner No Issue
26 enableTrading write access only Owner No Issue
27 setTaxes external access only Owner No Issue
28 setRatios external access only Owner No Issue
29 setWallets external access only Owner No Issue
30 setContractSwapSettings external access only Owner No Issue
31 setSwapSettings external access only Owner No Issue
32 setReflectionCriteria external access only Owner No Issue
33 setReflectorSettings external access only Owner No Issue
34 claimRewards external Critical operation

lacks event log
Refer Audit

Findings
35 getTotalReflected external Passed No Issue
36 getUserInfo external Passed No Issue
37 getUserRealizedGains external Passed No Issue
38 getUserUnpaidEarnings external Passed No Issue
39 setNewRouter write access only Owner No Issue
40 setLpPair external access only Owner No Issue
41 isExcludedFromFees read Passed No Issue

42 isExcludedFromDividends read Passed No Issue
43 isExcludedFromLimits read Passed No Issue
44 setExcludedFromLimits external access only Owner No Issue
45 setDividendExcluded write access only Owner No Issue
46 setExcludedFromFees write access only Owner No Issue
47 setMaxTxPercent external access only Owner No Issue
48 setMaxWalletSize external access only Owner No Issue
49 getMaxTX read Passed No Issue
50 getMaxWallet read Passed No Issue
51 excludePresaleAddresses external access only Owner No Issue
52 _hasLimits write Passed No Issue
53 _transfer internal Passed No Issue
54 _finalizeTransfer internal Passed No Issue
55 processTokenReflect internal Passed No Issue
56 _basicTransfer internal Passed No Issue
57 takeTaxes Passed No Issue Passed
58 contractSwap internal Passed No Issue
59 _checkLiquidityAdd write Passed No Issue
60 multiSendTokens external Infinite loops

possibility
Refer Audit

Findings
61 manualDeposit external access only Owner No Issue
62 setMinimumTokensForRewards external access only Owner No Issue
63 whomst_tokens external Passed No Issue
64 whomst_routers external Passed No Issue
65 updateRewardsTokens external Passed No Issue
66 getRewardsRatios external Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Critical operation lacks event log:

Missing event log for: claimRewards

Resolution: Please write an event log for listed events.

Status: Acknowledged

(2) Infinite loops possibility:

As array elements will increase, then it will cost more and more gas. And eventually, it will

stop all the functionality. After several hundreds of transactions, all those functions

depending on it will stop. We suggest avoiding loops. For example, use mapping to store

the array index. And query that data directly, instead of looping through all the elements to

find an element.

Resolution: Adjust logic to replace loops with mapping or other code structure.

● multiSendTokens() - accounts.length

Status: Acknowledged

Very Low / Informational / Best practices:

(1) Missing required error message:

There is no error message set in the required condition.

Resolution: We suggest setting relevant error messages to identify the failure of the

transaction.

Status: Fixed

(2) Unused function parameter / variables / event / internal function:

Unused function parameter:

Unused variables:

Unused event:

Unused internal function:

There are many functions that have passed unused function parameters. CATECOIN,

CATPAY, and other variables defined but not used anywhere.A SniperCaught() event is

defined but not used in code. A _basicTransfer internal function defined but not used

anywhere.

Resolution: Remove unused variables / event / function parameter / internal function from

the code.

Status: Fixed

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● transferOwner: Owner can be removed as a library and added here to allow for

custom transfers and announcements.

● renounceOwnership: Owner can renounce new ownership.

● approveContractContingency: Owner can approve contract contingency.

● setBlacklistEnabled: Owner can set enabled status in address in blacklist.

● setInitializers: Owner can set initializers.

● removeSniper: Owner can remove sniper address.

● setProtectionSettings: Owner can set protection settings like: _antiSnipe, _antiGas,

_antiBlock, _algo.

● setGasPriceLimit: Owner can set gas price limit.

● enableTrading: Owner can enable trading status.

● setTaxes: Owner can set buy Fee, sell Fee, transfer Fee taxes.

● setRatios: Owner can set rewardsToken1, rewardsToken2, liquidity, marketing ,team

ratios.

● setWallets: Owner can set wallet addresses like: marketing address, payable team

address, liquidity address.

● setContractSwapSettings: Owner can set contract swap settings status.

● setSwapSettings: Owner can set swap settings like: thresholdPercent,

thresholdPercent, amountPercent, amountDivisor.

● setReflectionCriteria: Owner can set reflection criteria like: _minPeriod,

_minReflection, minReflectionMultiplier.

● setReflectorSettings: Owner can set reflector value.

● setNewRouter: Owner can set new router address.

● setLpPair: Owner can set LP pair address.

● setExcludedFromLimits: Owner can set excluded address status.

● setDividendExcluded: Owner can set dividend exclude address.

● setExcludedFromFees: Owner can set excluded fees from account.

● setMaxTxPercent: Owner can set transaction percentage.

● setMaxWalletSize: Owner can set maximum wallet size.

● excludePresaleAddresses: Owner can set presale address and router address.

● multiSendTokens: Owner can send multi tokens.

● manualDeposit: Owner can manual deposit.

● setMinimumTokensForRewards: Owner can set minimum tokens for rewards.

Conclusion

We were given a contract code. And we have used all possible tests based on given

objects as files. We have not observed any major issues. So, it’s good to go to
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - CateFarm Token

Slither Results Log

Slither log >> CateFarm.sol

Solidity Static Analysis
CateFarm.sol

Solhint Linter

CateFarm.sol

CateFarm.sol:6:1: Error: Compiler version >=0.6.0 <0.9.0 does not
satisfy the r semver requirement
CateFarm.sol:37:5: Error: Function name must be in mixedCase
CateFarm.sol:116:5: Error: Function name must be in mixedCase
CateFarm.sol:117:5: Error: Function name must be in mixedCase
CateFarm.sol:122:1: Error: Contract has 31 states declarations but
allowed no more than 15
CateFarm.sol:126:5: Error: Explicitly mark visibility of state
CateFarm.sol:127:5: Error: Explicitly mark visibility of state
CateFarm.sol:129:5: Error: Explicitly mark visibility of state
CateFarm.sol:137:30: Error: Constant name must be in capitalized
SNAKE_CASE
CateFarm.sol:139:29: Error: Constant name must be in capitalized
SNAKE_CASE
CateFarm.sol:140:29: Error: Constant name must be in capitalized
SNAKE_CASE
CateFarm.sol:141:28: Error: Constant name must be in capitalized
SNAKE_CASE
CateFarm.sol:143:30: Error: Constant name must be in capitalized
SNAKE_CASE
CateFarm.sol:173:29: Error: Constant name must be in capitalized
SNAKE_CASE
CateFarm.sol:174:29: Error: Constant name must be in capitalized
SNAKE_CASE
CateFarm.sol:175:29: Error: Constant name must be in capitalized
SNAKE_CASE
CateFarm.sol:176:5: Error: Explicitly mark visibility of state
CateFarm.sol:176:22: Error: Constant name must be in capitalized
SNAKE_CASE
CateFarm.sol:201:5: Error: Explicitly mark visibility of state
CateFarm.sol:202:5: Error: Explicitly mark visibility of state
CateFarm.sol:204:5: Error: Explicitly mark visibility of state
CateFarm.sol:214:5: Error: Explicitly mark visibility of state
CateFarm.sol:234:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
CateFarm.sol:304:32: Error: Code contains empty blocks
CateFarm.sol:384:70: Error: Avoid to make time-based decisions in
your business logic
CateFarm.sol:384:99: Error: Code contains empty blocks
CateFarm.sol:384:108: Error: Code contains empty blocks
CateFarm.sol:385:36: Error: Code contains empty blocks
CateFarm.sol:385:45: Error: Code contains empty blocks
CateFarm.sol:462:9: Error: Variable name must be in mixedCase
CateFarm.sol:479:25: Error: Avoid to make time-based decisions in
your business logic
CateFarm.sol:482:33: Error: Avoid to make time-based decisions in
your business logic
CateFarm.sol:557:16: Error: Avoid to use tx.origin
CateFarm.sol:607:52: Error: Avoid to make time-based decisions in
your business logic
CateFarm.sol:612:36: Error: Avoid to make time-based decisions in
your business logic

CateFarm.sol:659:46: Error: Code contains empty blocks
CateFarm.sol:659:55: Error: Code contains empty blocks
CateFarm.sol:661:58: Error: Code contains empty blocks
CateFarm.sol:661:67: Error: Code contains empty blocks
CateFarm.sol:666:44: Error: Code contains empty blocks
CateFarm.sol:666:53: Error: Code contains empty blocks
CateFarm.sol:668:54: Error: Code contains empty blocks
CateFarm.sol:668:63: Error: Code contains empty blocks
CateFarm.sol:672:49: Error: Code contains empty blocks
CateFarm.sol:672:58: Error: Code contains empty blocks
CateFarm.sol:683:75: Error: Variable "other" is unused
CateFarm.sol:727:13: Error: Avoid to make time-based decisions in
your business logic
CateFarm.sol:740:17: Error: Avoid to make time-based decisions in
your business logic
CateFarm.sol:752:57: Error: Code contains empty blocks
CateFarm.sol:752:66: Error: Code contains empty blocks
CateFarm.sol:789:60: Error: Code contains empty blocks
CateFarm.sol:789:69: Error: Code contains empty blocks
CateFarm.sol:796:5: Error: Function name must be in mixedCase
CateFarm.sol:800:5: Error: Function name must be in mixedCase

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

