@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Avarice Token
Platform: Binance Smart Chain
Language: Solidity

Date: May 4th, 2022

Table of contents

Introduction

... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 15
(@ 0] 1Y/ =1 1 T To [o] 0T) 16
DISCIAIMEIS ... e 18
Appendix
o Code FIoW Diagramououoiiii s 19
o Shther RESUIS LOGuiiiiii e 20
e Solidity staticanalysis ... 24
® SOININt LiNtEr oo 27

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Avarice team to perform the Security audit of the
Avarice Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on April 29th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The Avarice contract is a BE20 standard smart contract which has functionalities like

deposit for staking, sell, cancel or get loan on stake, enter lobby, lend on stake, buy stake.

Audit scope

Name Code Review and Security Analysis Report for
Avarice Token Smart Contract

Platform BSC / Solidity
File Avarice.sol
File MD5 Hash FBD6662EA975C7115054B86ED30A 1232
Updated File MD5 Hash ED45E4DD6800C55A93539C750217FB22
Online Code Link 0x7f57f5bf9dc3409733c913176f3034f03bedacas
Updated Online Code Link | Oxaef3f73a20d19b998e85e6fcdb89cf4279be2853
Audit Date April 29th, 2022
Revise Audit Date June 4th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://testnet.bscscan.com/address/0x7f57f5bf9dc3409733c913176f3034f03be4aca5#code
https://bscscan.com/address/0xaef3f73a20d19b998e85e6fcdb89cf4279be2853

Claimed Smart Contract Features

Claimed Feature Detail Our Observation
Tokenomics: YES, This is valid.
e Name: Avarice
e Symbol: AVC Owner authorized wallet can
e Decimals: 18 set some percentage value and
e Lobby Pool: 3 million we suggest handling the
e Max Stake Days: 300 private key of that wallet
e Referred Bonus NR: 5% securely.

e Referred Bonus NRR: 1%
e Dividends Pool Caps at 60 days.
e Bonus Calculation Ratio: 128
e Lobby Pool Decrease Percentage: 5%
e Day Share Percentage
o Avaric Team: 4%
o Marketing: 1%
o BuyBack: 1%

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 1 medium and 1 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Avarice Token are part of its logical algorithm. A library is a different type of
smart contract that contains reusable code. Once deployed on the blockchain (only once),
it is assigned a specific address and its properties / methods can be reused many times by

other contracts in the Avarice Token.

The Avarice Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a Avarice Token smart contract code in the form of a BSCScan Web

Link.The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand
the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access by isOwner No Issue
5 | transferOwnership write access by isOwner No Issue
6 transferOwnership internal Passed No Issue
7 | name read Passed No Issue
8 [symbol read Passed No Issue
9 [decimals read Passed No Issue
10 | totalSupply read Passed No Issue
11 | balanceOf read Passed No Issue
12 | transfer write Passed No Issue
13 | allowance read Passed No Issue
14 | approve write Passed No Issue
15 | transferFrom write Passed No Issue
16 | increaseAllowance write Passed No Issue
17 | decreaseAllowance write Passed No Issue
18 | transfer internal Passed No Issue
19 | mint internal Passed No Issue
20 | burn internal Passed No Issue
21 | approve internal Passed No Issue
22 | spendAllowance internal Passed No Issue
23 | beforeTokenTransfer internal Passed No Issue
24 | afterTokenTransfer internal Passed No Issue
25 | switchLoaningStatus external | access by isOwner No Issue
26 | switchStakeSellingStatus external | access by isOwner No Issue
27 | flushFirstDaylLobbyEntry external | access by isOwner No Issue
28 | flushFirstDayLobbyEntrySwitch external | access by isOwner No Issue
29 | do changeMarketingAddress external | access by isOwner No Issue
30 | flushdevShareOfStakeSells external | access by isOwner No Issue
31 | clcDay read Passed No Issue
32 | updateDaily write Passed No Issue
33 | updatelLobbyPool internal Passed No Issue
34 | sendDevShare internal Passed No Issue
35 [sendMarketingShare internal Passed No Issue
36 | buylLobbyBuybackShare internal Passed No Issue
37 | EnterLobby external Passed No Issue
38 | ExitLobby external Passed No Issue
39 [clcTokenValue read Passed No Issue
40 | EnterStake external Passed No Issue
41 | calcStakeCount read Passed No Issue
42 | EndStake external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

43 | calcStakeCollecting read Passed No Issue
44 | calcBonusToken write Passed No Issue
45 | clcDayDivs read Passed No Issue
46 | updateActiveStakesTokens read Passed No Issue
47 | sellStakeRequest external Passed No Issue
48 | buyStakeRequest external Critical operation Refer audit
lacks event log findings
49 | withdrawSoldStakeFunds external | Critical operation Refer audit
lacks event log findings
50 [getLoanOnStake external Passed No Issue
51 | cancelStakeLoanRequest write Critical operation Refer audit
lacks event log findings
52 | cancelSellStakeRequest internal Passed No Issue
53 [lendOnStake external Passed No Issue
54 | clcLenderStakeld read Passed No Issue
55 | collectLendReturn external Critical operation Refer audit
lacks event log findings
56 | updateFinishedLoan internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.
High Severity

No High severity vulnerabilities were found.

Medium

(1) “Out of Gas” Issue:
clcDayDivs, calcStakeCollecting functions are using a loop for days which can be reverted
because of out of gas error. The calcStakeCollecting is used to execute inside EndStake

and getLoanOnStake functions.

Resolution: We suggest correcting the logic.
Status: Fixed.

Low

(1) Critical operation lacks event log:
There is a missing event log for some functions.
Functions are listed below:

e buyStakeRequest

e withdrawSoldStakeFunds

e cancelStakeLoanRequest

e collectLendReturn

Resolution: We suggest adding logs for these functions.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Unused variable:

/* Starting amount of tokens that are minted daily to be distributed
uint256 internal constant startinglLobbyPool = 3 * 1e8;

/* last amount of lobby pool which starts from startinglLobbyPool */
uint256 internal lastlLobbyPool = startinglLobbyPool;

/* Min penalty for canceling stake */
uint256 internal constant penalty min = 2;

/* Max penalty for canceling stake */
uint256 internal constant penalty max = 50;

A startingLobbyPool variable is used to initiate the lastLobbyPool variable and not used

any other place. penalty_min , penalty_max have not been used in code.

Resolution: We suggest initiating the lastLobbyPool variable by the same value of
startingLobbyPool and removing unused variables.
Status: Fixed.

(2) Hardcoded value:

/* Address of flush accs */

address internal constant avariceTeam _addr_1 = 0xba38ec6D3b67562c94BF5e08A2e80F432C7F32F5;
address internal constant avariceTeam _addr_2 = 0x8FB1c@840e86306b4036c228Bf875D1DaC3C6Dd7;
address internal constant avariceTeam_addr_3 = 0xde®8C84C9005dcE3BD82FaD861Aal191185CF14e0;

/* Time of contract launch (0000-00-00|00:00:00) */
uint256 internal constant LAUNCH TIME = 1650881563;

These variables are set with hardcoded values and cannot be changed after contract

deployment..

Resolution: Deployer needs to confirm before deploying the contract.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e switchLoaningStatus: Owner can switch the loaning feature status.

e switchStakeSellingStatus: Owner can switch the stake selling feature status.

e flushFirstDayLobbyEntry: Owner can flush the 1st day's lobby entry to dev address.
e flushFirstDayLobbyEntrySwitch: Owner can turn off the first day flush functionality.
e do_changeMarketingAddress: Owner can change marketing wallet address.

e flushdevShareOfStakeSells: Owner can flushes the dev share from stake sells.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We have observed some issues. And those are fixed in revised code. So,

it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Avarice Token

(=) avarice

=5 avericeTearm s 1
ress avarice Team_oadd >
ress avarice Teaim__adidr
ress marketing _acolr
ress buyBack_addr
255 startal obbyPool
256 lastLobbyPool
256 DM_awvarice Team_percentage
Z56 DM _marketing_percertage
S5 _DM_baryBachk betcmade
S6 lobby_pool_d percentmsge

e

556 max_siake davs
256 ref bhonus MNR

256 ref bonus NRR

256 dividendsPoolCapDays

firstDayFiushed

I IoarinolsPaUse ol

ol stakeSelnglsPaused

Ar Lobby oweralData nberLolixy__owverallData
ZSE owerall oy Erdry

2565 owveral_stakedTolerss

oweral_collected Tokens

2565 owverall collectedDivs

2565 owverall collectedBonusTokens

address==wurit 255 referrerBonusesPaid

iyt AN M ISE usersCourtDaily

G ZSE UsersCount

uirt 256 saveTotal Toker

addr P e — Lobiy e rLobby (A sarcniatn
apiryt =1=] LRI SE lokky

acladr 19 UM 2SES=smemberStaloe

wi LMD SE daysActivelnStakeTokens

[T Ty e LM 2 SE cdaysactveinStake TokensiNncreses
- i 2ss oday sactveinStake TokensDecrase
TIME

CEEEEEEEEEEEED
BRRRARRRERL

i

B

[E|E|E E[E [t
FRERRE
1
i
i

00000000000000000000600

0000000000\00000000¢
]
]
i

=
=56 de T Al -

0000000000
§
Z
0
2

E-t=l=]d 2SS s

acier arw oS Traceamount Sumoci()
o LMt SE= gl o@rns

adaress T e e S e it

aSddress==wunri 255 lendersPaiclSmourit

-.-pelatel.:t-l:rypual()
sendDevs:-ate

»
huyLobbmackShare()
i Erter ol)
Exitl okl s

< Lal=lo]
QoalcBormus Tokemn()
A cleDayDivs()
Duupdate ActiveStakesTokerss{)
selStakeRegres st)
o uy Stakeftecue st
it avw SoldStake Funds.)
et oan O Stabkoe()

kel]
car =ty
T L
Cl.clcl_and&rSIalceld()
colle ot endeturmi
wdﬁteFlnlmoﬁh()

Q0000000000000000000¢ .L

~
&) =e~mczo
Comntext
rEeErRca2o

TERCZOMetad st

address——uiNt256 _balances
Sddress=—mapping Scidr LI SE
LIMZSE _totalSupply

String _rame
string __symibaol
Chramel)

- S ormEstr uctor L]
@ SLovmemer()

= renounce OwnnersHIpC)
- transferOwwrership)

> _transter Oworver shied)

imereaseAllowance()
decreassAlowance()
_transferi)

"spendallowance(l
_beforeTokenTransfes()
_atter TokenTransTes()

oo%wonuumu ooooo
]
T
T

| (ED remcCronetacata

SER 2O

traevsferFromi)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> Avarice.sol

INFO: Detec ‘to rs:

ddress-validation

timestamp for comparisons
] uses timestamp for comparisons
uses timestamp for comparisons

) uses timestamp for comparisons

= 1) {Avarice.sol#1106)
.50l#1161-1191) uses tlr“-:star’p for comparisons

59 (150
uses 't'LI"’rS'th"’\. ‘r. compar isons

E-I'r’a|:l-’»:r’|:»:|'§take[r’s-;‘s-:r-:-:r][stak-:I-:].-:r-:l:a';,-' < currentDay, S
) (Avarice.sol#1451-1475) uses timestamp for compariscns
}{mapMemberStake[msg.sender J[stakeId].endDay = currentDay,Target stake is enc
(Avarice.sol#1483-1526) uses timestamp for comparisons
tDay) (Avarice.sol#1492)
) uses timestamp Tor
Avarice. ompares to a boolean constant:

varice.

o0 W W
[

compares to lean constant:
Avarice.
Avarice.

varice.f

ce: https://github.com/crytic/slither/wiki/Detector-Documenta
Detectors

otk okttt

Cons id

/wiki/Detector-Documentation#incorrect-versions-of-solidity

y-naming
|'-“'|t expression “t\ is (Avarice.sol)" inContext (Avarice.sol#2

2 ence: https://g .com/crytic, 1 Jwiki/Detector-Documentat ic edundant-statements
INFD Detectors:

Reentrancy in A .Endstake(uint256) (Avarice.sol#1276-1314):

1] * DM_buyBack_p
ST i

is a private and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Avarice.sol
Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in Avarice flushdevShareOfStakeSells():
Could potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by
this static analysis.

more

Pos: 1020:5:

Block timestamp:

Use of "blocktimestamp": "block timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome of
a transaction in the mined block.

more

Pos: 1251:13:

Gas & Economy

Gas costs:

Gas requirement of function Avarice.name is infinite: If the gas requirement of a function is higher
than the block gas Llimit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 258:5:

Gas costs:

Gas requirement of function Avarice.collectLendReturn is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)

Pos: 1718:5:

Miscellaneous

Constant/View/Pure functions:

Avarice.clcDayDivs(address,uint256,uint256) : Is constant but potentially should not be. Note:
Modifiers are currently not considered by this static analysis.

more

Pos: 1368:5:

Similar variable names:

Avarice.clcDayDivs(address,uint256,uint256) : Variables hawve very similar names "_dSC" and

"_day". Note: Modifiers are currently not considered by this static analysis.
Pos: 1373:48:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

No return:

IERC20Metadata.decimals(): Defines a return type but never explicitly returns a value.
Pos: 202:5:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in

your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 1661:9:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.

Pos: 1732:9:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 1081:27:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 1089:41:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of 0.1
since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.

Pos: 1091:46:

is a private and confidential document. No part of this document should
sclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Avarice.sol

o)
Q
]

Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:
Error:

missing
missing
missing
missing
missing
missing
missing
missing
missing
missing
missing

Q

n o
@

Q_)

o ot

) O O

o)
M My e

o]
(U]

[n

® O

)
B B B

D

Q
=

g
)
v}
ct

)

o
et
=
(@)
[

S
S
SO
S
S

e}
AT)

=
w0 nnnnnononon
)

® ® O
® ® ® O

> O
®
KK KKK

o)
=
=
@)
(o

@)
]
(@)
5 B
Q

W)
ct ct ct cf

1)
W)
[}

Avarice.

(0)]
]
(@)
[

\varice.

varice.
\varice.
\varice.

oy ©
NG TN
N
W)
=
@)

O O O
(e¢]

~J

o
Q
]
AV VR)

KB B B
O O
B B B

nnn o
O
~J
~J
o
ot f

O
® @

~J
©
3
v}
3]
n}
)
D

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

