
Project: AstroBirdz Protocol
Platform: Binance Smart Chain
Language: Solidity
Date: February 8th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 24

● Solidity static analysis ….……………………………………………………………….. 33

● Solhint Linter …………………………………………………………………….……….. 38

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the AstroBirdz team to perform the Security audit of the
AstroBirdz Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on February 8th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
AstroBirdz is a standard BEP20 token smart contract. This audit only considers AstroBirdz

protocol smart contract, and does not cover any other smart contracts on the platform.

Audit scope

Name Code Review and Security Analysis Report for
AstroBirdz Protocol Smart Contracts

Platform BSC / Solidity

File 1 AstroBirdsV2.sol

File 1 MD5 Hash B33A037FDD7783C41CDB63997CE2CD5C

File 2 AstroBirdzDividendTracker.sol

File 2 MD5 Hash 949E6D20DBFED7C06449B48ED6598561

Audit Date February 8th,2022

https://github.com/AstroBirdz/Token-Contracts/blob/master/contracts/AstroBirdsV2.sol
https://github.com/AstroBirdz/Token-Contracts/blob/master/contracts/AstroBirdzDividendTracker.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 AstroBirdsV2.sol

● Decimals: 18

● PSI rewards Fee: 1%

● Liquidity Pool: 3%

● Marketing Fee: 3%

● Team Fee: 1%

● Buy back Fee: 3%

● Sell Limit: 50000

● Maximum Amount Per Transaction: 5 Million

● Minimum Tokens Before Swap: 10,000

● Gas For Processing: 0.3 Million

YES, This is valid.

Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet
securely.

File 2 AstroBirdzDividendTracker.sol
● Name: AstroBirdz Dividend Tracker

● Symbol: ABZDT

● Decimals: 18

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts do contain owner control, which does not make them fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 5 low and some very low level issues.
These issues are not critical ones.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the AstroBirdz Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the AstroBirdz Protocol.

The AstroBirdz Protocol team has provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an AstroBirdz Protocol smart contract code in the form of a Github web

link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

AstroBirdsV2.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 initialize write Passed No Issue
3 initializer modifier Passed No Issue
4 onlyInitializing modifier Passed No Issue
5 _isConstructo read Passed No Issue
6 __Context_init internal access only

Initializing
No Issue

7 __Context_init_unchained internal access only
Initializing

No Issue

8 _msgSender internal Passed No Issue
9 _msgData internal Passed No Issue

10 onlyOwner modifier Passed No Issue
11 lockTheSwap modifier Passed No Issue
12 receive external Passed No Issue
13 _ERC20_init internal access only

Initializer
No Issue

14 initPSIDividendTracker external Critical operation
lacks event log

Refer Audit
Findings

15 name read Passed No Issue
16 symbol read Passed No Issue
17 decimals read Passed No Issue
18 totalSupply read Passed No Issue
19 balanceOf read Passed No Issue
20 calculateLiquidityFee internal Passed No Issue
21 calculatePSIFee internal Passed No Issue
22 calculateMarketingFee internal Passed No Issue
23 calculateTeamFee internal Passed No Issue
24 calculateBuybackFee internal Passed No Issue
25 setPSIFee write access only Owner No Issue
26 setLiquidityFee write access only Owner No Issue
27 setBuybackFee write access only Owner No Issue
28 setMarketingFee write access only Owner No Issue
29 setTeamFee write access only Owner No Issue
30 toggleSellLimit write access only Owner No Issue
31 setBuybackAddress write access only Owner No Issue
32 changeMarketingAddress write access only Owner No Issue
33 changeTeamAddress write access only Owner No Issue
34 changePSIAddress write access only Owner No Issue
35 changeLiquidityAddress write access only Owner No Issue
36 changeSellLimit write access only Owner No Issue
37 changeMaxtx write access only Owner No Issue

38 addExcludedAddress write access only Owner No Issue
39 removeExcludedAddress write access only Owner No Issue
40 excludeFromFeesAndDividen

ds
write access only Owner No Issue

41 addNewRouter external Function input
parameters lack of

check

Refer Audit
Findings

42 setAutomatedMarketMakerP
air

external access only Owner No Issue

43 _setAutomatedMarketMaker
Pair

write Passed No Issue

44 updateGasForProcessing external access only Owner No Issue
45 transferOwnership write access only Owner No Issue
46 getUnlockTime read Passed No Issue
47 lock write access only Owner No Issue
48 unlock write Regain Ownership Refer Audit

Findings
49 multiTransfer write Passed No Issue
50 processDividendTracker external Passed No Issue
51 transfer write Passed No Issue
52 allowance read Passed No Issue
53 approve write Passed No Issue
54 transferFrom write Passed No Issue
55 increaseAllowance write Passed No Issue
56 decreaseAllowance write Passed No Issue
57 setSwapAndLiquifyEnabled write access only Owner No Issue
58 _transferExcluded internal Passed No Issue
59 _transfer internal Passed No Issue
60 _fixDividendTrackerBalancer write Passed No Issue
61 _simpleTransfer internal Passed No Issue
62 performSwapAndLiquify external access only Owner No Issue
63 swapAndLiquify write access by lock

The Swap
No Issue

64 toggleTrading write access only Owner No Issue
65 togglePaused write access only Owner No Issue
66 swapTokensForEth write Passed No Issue
67 addLiquidity write Centralized risk in

addLiquidity
Refer Audit

Findings
68 swapAndSendDividends write Passed No Issue
69 swapETHForPSI write Passed No Issue
70 _mint internal Passed No Issue
71 mint external Unlimited mint Refer Audit

Findings
72 _burn internal Passed No Issue
73 burn external Passed No Issue
74 _approve internal Passed No Issue
75 _setupDecimals internal Passed No Issue
76 _beforeTokenTransfer internal Passed No Issue

AstroBirdzDividendTracker.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 getOwner read Passed No Issue
3 recoverERC20 write onlyOwnerOrPar

entToken
No Issue

4 _transfer internal Passed No Issue
5 withdrawDividend write Passed No Issue
6 excludeFromDividends external onlyOwnerOrPar

entToken
No Issue

7 includeInDividends external onlyOwnerOrPar
entToken

No Issue

8 updateClaimWait external access only
Owner

No Issue

9 updateMinTokenBalance external access only
Owner

No Issue

10 getLastProcessedIndex external Passed No Issue
11 getNumberOfTokenHolders external Passed No Issue
12 getAccount read Passed No Issue
13 getAccountAtIndex external Passed No Issue
14 canAutoClaim read Passed No Issue
15 ensureBalance external Passed No Issue
16 ensureBalanceForUsers external Function input

parameters lack
of check

Refer Audit
Findings

17 bytesToAddress write Passed No Issue
18 ensureBalanceForUser write access only

Owner
No Issue

19 setBalance external onlyOwnerOrPar
entToken

No Issue

20 process external Passed No Issue
21 processAccount external Function input

parameters lack
of check

Refer Audit
Findings

22 owner read Passed No Issue
23 onlyOwner modifier Passed No Issue
24 renounceOwnership write access only

Owner
No Issue

25 transferOwnership write access only
Owner

No Issue

26 _transferOwnership internal Passed No Issue
27 onlyOwnerOrParentToken modifier Passed No Issue
28 distributeDividends write access only

Owner Or Parent
Token

No Issue

29 withdrawDividend write Passed No Issue

30 _withdrawDividendOfUser internal Passed No Issue
31 dividendOf read Passed No Issue
32 withdrawableDividendOf read Passed No Issue
33 withdrawnDividendOf read Passed No Issue
34 accumulativeDividendOf read Passed No Issue
35 _transfer internal Passed No Issue
36 _mint internal Passed No Issue
37 _burn internal Passed No Issue
38 _setBalance internal Passed No Issue
39 recoverERC20 write access only

Owner
No Issue

40 recoverETH write access only
Owner

No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Function input parameters lack of check: AstroBirdzDividendTracker.sol
Variable validation is not performed in below functions :

● ensureBalanceForUser

● processAccount

● addNewRouter

The owner can update the router that generates liquidity to an address or contract

of choice (including the zero address). This contract could be a malicious contract

that simply keeps the tokens sent to it and thus drains all the fees. Additionally, this

contract could be used to revert sell transactions turning the token into a honeypot.

Resolution: We advise to put validation : int type variables should be greater than 0 and

address type variables should not be address(0).

AddNewRouter - Consider removing this function. If this is not possible, consider using an

Owner account that is behind a significantly long time lock so investors can reasonably

see this change coming and inspect the new router. Also consider requiring the router

address to be non-zero.

(2) Critical operation lacks event log:

Missing event log for:

● initPSIDividendTracker

Resolution: Please write an event log for listed events.

(3) Unlimited mint: AstroBirdsV2.sol

Token minting without any maximum limit is considered inappropriate for tokenomics.

Resolution: We recommend placing some limit on token minting to mitigate this issue.

(4) Centralized risk in addLiquidity: AstroBirdsV2.sol
In addLiquidity function, _liquidityPoolAddress gets Tokens from the Pool. If the private key

of the _liquidityPoolAddress wallet would be compromised, then it would create a problem.

Resolution: Ideally this can be a governance smart contract. On another hand, the

_liquidityPoolAddress can accept this risk and handle the private key very securely.

(5) Regain Ownership: AstroBirdsV2.sol
unlock() function can be used to take back ownership after ownership being transferred to

a new owner.

Resolution: We advise to set previousOwner = address(0) after unlocking the contract for

the owner.

Very Low / Informational / Best practices:

(1) Make variable constant: AstroBirdsV2.sol
_name, _symbol , _decimal: Values of these variables will be unchanged.

Resolution: We suggest adding a "constant" keyword for these variables. This will save

some gas.

(2) Other Programming Issue: AstroBirdzDividendTracker.sol

Immutable variables cannot be read during contract creation time, which means they

cannot be read in the constructor or any function or modifier called from it. It requires the

latest solidity version.

Resolution: We advise to deploy with the latest solidity version.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● recoverERC20: The AstroBirdzDividendTracker owner or partner can recover

ERC20 Token address and amount.

● excludeFromDividends: The AstroBirdzDividendTracker owner or partner can

exclude from dividends.

● includeInDividends: The AstroBirdzDividendTracker owner or partner can be

included in dividends.

● updateClaimWait: The AstroBirdzDividendTracker owner or partner can update

claim time.

● updateMinTokenBalance: The AstroBirdzDividendTracker owner or partner can

update minimum token balance.

● ensureBalanceForUsers: The AstroBirdzDividendTracker owner or partner can

ensure balance for multiple users.

● ensureBalanceForUser: The AstroBirdzDividendTracker owner or partner can

ensure balance for a single user.

● setBalance: The AstroBirdzDividendTracker owner or partner can set balance.

● processAccount: The AstroBirdzDividendTracker owner or partner can process the

account automatically.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - AstroBirdz Protocol

AstroBirdsV2 Diagram

AstroBirdzDividendTracker Diagram

Slither Results Log

Slither log >> AstroBirdsV2.sol

Slither log >> AstroBirdzDividendTracker.sol

Solidity Static Analysis

AstroBirdsV2.sol

AstroBirdzDividendTracker.sol

Solhint Linter

AstroBirdsV2.sol

AstroBirdsV2.sol:1222:18: Error: Parse error: missing ';' at '{'
AstroBirdsV2.sol:1260:18: Error: Parse error: missing ';' at '{'
AstroBirdsV2.sol:1366:18: Error: Parse error: missing ';' at '{'
AstroBirdsV2.sol:1507:18: Error: Parse error: missing ';' at '{'

AstroBirdzDividendTracker.sol

AstroBirdzDividendTracker.sol:502:18: Error: Parse error: missing ';'
at '{'
AstroBirdzDividendTracker.sol:899:22: Error: Parse error: missing ';'
at '{'
AstroBirdzDividendTracker.sol:943:18: Error: Parse error: missing ';'
at '{'
AstroBirdzDividendTracker.sol:976:18: Error: Parse error: missing ';'
at '{'
AstroBirdzDividendTracker.sol:1025:18: Error: Parse error: missing
';' at '{'

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

