

 SMART CONTRACT CODE
 REVIEW AND SECURITY

 ANALYSIS REPORT

Customer: XDriveToken
Prepared on: 03/12/2020
Platform: Ethereum
Language: Solidity

audit@etherauthority.io

Table of contents

Document 3

Introduction 4

Project Scope 4

Executive Summary 5

Code Quality 5

Documentation 6

Use of Dependencies 6

AS-IS overview 6

Severity Definitions 8

Audit Findings 8

Conclusion 10

Our Methodology 11

Disclaimers 13

Document

EtherAuthority Limited (www.EtherAuthority.io)

THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION

ABOUT IT SYSTEMS AND INTELLECTUAL PROPERTY OF THE

CUSTOMER AS WELL AS INFORMATION ABOUT POTENTIAL

VULNERABILITIES AND METHODS OF THEIR EXPLOITATION.

THE REPORT CONTAINING CONFIDENTIAL INFORMATION CAN BE

USED INTERNALLY BY THE CUSTOMER OR IT CAN BE DISCLOSED

PUBLICLY AFTER ALL VULNERABILITIES ARE FIXED - UPON

DECISION OF CUSTOMER.

Name Smart Contract Code Review and Security
Analysis Report for XDriveToken

Platform Ethereum / Solidity

MD5 hash CC774C8A753764685D79B4FC45541D52

File name XDriveToken.sol

SHA256 hash
EACA8539BCB1824A3A5188284CB133B3152448811E10ACBC8770C
5241BC0B8C2

Date 03/12/2020

Introduction

EtherAuthority.io (Consultant) was contracted by XDrive Token Team
(Customer) to conduct a Smart Contracts Code Review and Security
Analysis. This report presents the findings of the security assessment of
Customer`s smart contracts and its code review conducted between
November 26th, 2020 – December 3rd, 2020.

Project Scope

The scope of the project is XDrive Token smart contract.

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered (the full list includes them but is not
limited to them):

• Reentrancy
• Timestamp Dependence
• Gas Limit and Loops
• DoS with (Unexpected) Throw
• DoS with Block Gas Limit
• Transaction-Ordering Dependence
• Byte array vulnerabilities
• Style guide violation
• Transfer forwards all gas
• ERC20 API violation
• Malicious libraries
• Compiler version not fixed
• Unchecked external call - Unchecked math
• Unsafe type inference
• Implicit visibility level

EtherAuthority Limited (www.EtherAuthority.io)

Executive Summary

According to the assessment, Customer`s solidity smart contract is well
secured.

 You are here

Our team performed analysis of code functionality, manual audit and
automated checks with smartDec, Mythril, Slither and remix IDE. All
issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section.
General overview is presented in AS-IS section and all found issues can
be found in the Audit overview section.

We found 0 high, 0 medium and 0 low and some very low level issues.

Code Quality

XDriveToken protocol consists of one smart contract file.This single file

smart contracts also contains safeMath and toAddress library, It is a

compact and well written contract.

The libraries in the XDriveToken protocol are part of its logical algorithm.

A library is a different type of smart contract that contains reusable code.

Once deployed on the blockchain (only once), it is assigned a specific

address and its properties / methods can be reused many times by other

contracts in the XDriveToken protocol.

XDriveToken team has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

EtherAuthority Limited (www.EtherAuthority.io)

Overall, the code is almost not commented. Commenting can provide

rich documentation for functions, return variables and more. Use of

Ethereum Natural Language Specification Format (NatSpec) for

commenting is recommended.

Documentation

As mentioned above, It's recommended to write comments in the smart

contract code, so anyone can quickly understand the programming flow

as well as complex code logic.

We were given an XDriveToken contract in the form of a file. The hash of

that file is mentioned above in the table.

Comments are very helpful in understanding the overall architecture of

the protocol. It also provided a clear overview of the system

components, including helpful details, like the lifetime of the background

script.

Use of Dependencies
As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects. And even core code blocks are written well and

systematically.

AS-IS overview

XDrivenToken contract overview

XDrivenToken is a smart contract that provides a standard mechanism
to grow capital via demand supply control mechanism for balanced
maximum appreciation on investment.

EtherAuthority Limited (www.EtherAuthority.io)

Contract for audit.sol

Contract: XDrivenToken

Inherit: null

About: This contract provides a good earning setup with secured balanced

growth.

Observation: Passed

Test Report: All passed including security check.

Score: Passed
Conclusion: Passed

EtherAuthority Limited (www.EtherAuthority.io)

Sl. Function Type Observation Test
Report

Conclusion Score

1 addcontract write Passed All Passed No Issue Passed
2 setAdmin write Passed All Passed No Issue Passed
3 getAdminAmount read Passed All Passed No Issue Passed
4 getAdminPayments read Passed All Passed No Issue Passed
5 buy read Passed All Passed No Issue Passed
6 reinvest read Passed All Passed No Issue Passed
7 exit write Passed All Passed No Issue Passed
8 withdraw write Passed All Passed No Issue Passed
9 sell write Passed All Passed No Issue Passed
10 transfer write Passed All Passed No Issue Passed
11 totalEtherumBalance read Passed All Passed No Issue Passed
12 totalsupply read Passed All Passed No Issue Passed
13 myTokens read Passed All Passed No Issue Passed
14 mydividends read Passed All Passed No Issue Passed
15 balanceof read Passed All Passed No Issue Passed
16 dividendof read Passed All Passed No Issue Passed
17 sellprice read Passed All Passed No Issue Passed
18 buyprice read Passed All Passed No Issue Passed
19 CalculateTokenReceived read Passed All Passed No Issue Passed
20 CalculateEthereumReceive

d
read Passed All Passed No Issue Passed

21 purchaseTokens write Passed All Passed No Issue Passed
22 ethereumToTokens_ read Passed All Passed No Issue Passed
23 tokensToEthereum_ read Passed All Passed No Issue Passed
24 sqrt read Passed All Passed No Issue Passed
25 getReferralBalance read Passed All Passed No Issue Passed
26 getPayouts read Passed All Passed No Issue Passed
27 ProfitPerShare read Passed All Passed No Issue Passed

Severity Definitions

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) SafeMath is missing in some places. Although it costs a very little

extra gas, it protects from all overflow/underflow scenarios, which

may be overlooked by the developer.

EtherAuthority Limited (www.EtherAuthority.io)

 Risk Level Description

 Critical Critical vulnerabilities are usually straightforward to

 exploit and can lead to tokens loss etc.

 High-level vulnerabilities are difficult to exploit;

 High
 however, they also have significant impact on smart

 contract execution, e.g. public access to crucial

 functions

 Medium
 Medium-level vulnerabilities are important to fix;

 however, they can’t lead to tokens lose

 Low-level vulnerabilities are mostly related to

 Low outdated, unused etc. code snippets, that can’t have

 significant impact on execution

 Lowest / Code Lowest-level vulnerabilities, code style violations

 Style / Best and info statements can’t affect smart contract

 Practice execution and can be ignored.

Very Low

(1) Compiler version is not fixed but after compiling it has no effect on

generated machine code. but the lower compiler version is little

vulnerable to some compiler oriented bugs (like memory overlap on

fixed size arrays), which normally are fixed on later versions. so it is

good to use the latest stable version to be on the safe side.

(2) Static tools show the following error but none of this is valid under

use cases.

EtherAuthority Limited (www.EtherAuthority.io)

Conclusion

We were given contract files. And we have used all possible tests based

on given objects as files. The contracts are written so systematic (but not

commented), that we found no critical things. So it is good to go for

production after adding safeMath for enhanced security.

Since possible test cases can be unlimited for such extensive smart

contract protocol, so we provide no such guarantee of future outcomes.

We have used all the latest static tools and manual observations to

cover maximum possible test cases to scan everything.

Smart contracts within the scope, were manually reviewed and analyzed

with static analysis tools. Smart Contract’s high level description of

functionality was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in

the reviewed code.

Security state of reviewed contract is “Well Secured ”.

EtherAuthority Limited (www.EtherAuthority.io)

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the

quality of systems we review and aim for sufficient remediation to help

protect users. The following is the methodology we use in our security

audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues

with code logic, error handling, protocol and header parsing,

cryptographic errors, and random number generators. We also watch for

areas where more defensive programming could reduce the risk of future

mistakes and speed up future audits. Although our primary focus is on

the in-scope code, we examine dependency code and behavior when it

is relevant to a particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's

web site to get a high level understanding of what functionality the

software under review provides. We then meet with the developers to

gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While

we do this, we brainstorm threat models and attack surfaces. We read

design documentation, review other audit results, search for similar

projects, examine source code dependencies, skim open issue

tickets, and generally investigate details other than the implementation.

EtherAuthority Limited (www.EtherAuthority.io)

Documenting Results:
We follow a conservative, transparent process for analyzing potential

security vulnerabilities and seeing them through successful remediation.

Whenever a potential issue is discovered, we immediately create an

Issue entry for it in this document, even though we have not yet verified

the feasibility and impact of the issue. This process is conservative

because we document our suspicions early even if they are later shown

to not represent exploitable vulnerabilities. We generally follow a process

of first documenting the suspicion with unresolved questions, then

confirming the issue through code analysis, live experimentation, or

automated tests. Code analysis is the most tentative, and we strive to

provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live

system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for

future releases. The mitigation and remediation recommendations

should be scrutinized by the developers and deployment engineers, and

successful mitigation and remediation is an ongoing collaborative

process after we deliver our report, and before the details are made

public.

EtherAuthority Limited (www.EtherAuthority.io)

Disclaimers

EtherAuthority.io Disclaimer

The smart contracts given for audit have been analyzed in accordance
with the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code,
the details of which are disclosed in this report, (Source Code); the
Source Code compilation, deployment and functionality (performing the
intended functions).

Because the total number of test cases are unlimited, so the audit makes
no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of
the code, bugfree status or any other statements of the contract. While
we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a public
bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the
smart contract can have their own vulnerabilities that can lead to hacks.
Thus, the audit can’t guarantee explicit security of the audited smart
contracts.

EtherAuthority Limited (www.EtherAuthority.io)

EtherAuthority Limited (www.EtherAuthority.io)

