
SMART CONTRACT CODE
REVIEW AND SECURITY

ANALYSIS REPORT

Customer​:​ WhaleSwap Team
Prepared on​: 04/03/2021
Platform: Binance Smart Chain
Language: Solidity

audit@etherauthority.io

Table of contents

Document 3

Introduction 4

Quick Stats 5

Executive Summary 6

Code Quality 6

Documentation 7

Use of Dependencies 7

AS-IS overview 8

Severity Definitions 11

Audit Findings 12

Conclusion 13

Our Methodology 14

Disclaimers 16

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.

EtherAuthority Limited (www.EtherAuthority.io)

Document

Name Smart Contract Code Review and Security
Analysis Report for WhaleSwap

Platform Binance Smart Chain / Solidity

File name 1 MasterChef.sol

MD5 hash 20e47f3d8d0b9feea4f48a6e1be4e85a

SHA256 hash
3f3f0e6a5ca8413502f2f97a5825d724b16fbfc85c396
110e2bd885fe7794511

File name 2 Timelock.sol

MD5 hash 55bd0f0122793b9b0fb18c710d92c6aa

SHA256 hash
297347057c478616f549324331ebaef002dde6b88f8c
480932025a63604254aa

File name 3 WhaleToken.sol

MD5 hash 6bb3b65b865da16daa90714554e77331

SHA256 hash
56e132623b2c0cc24324ede4f0a5f01a2d2e40defc6ca
4da4e46e48dfbdb09e8

Date 04/03/2021

Introduction
We were contracted by the WhaleSwap team to perform the Security audit
of the smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all
the findings regarding the audit performed on 04/03/2021.

EtherAuthority Limited (www.EtherAuthority.io)

Quick Stats:

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version too old Moderated

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas
Optimization

Assert() misuse Passed

High consumption ‘for/while’ loop Possibility

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

Overall Audit Result: PASSED

EtherAuthority Limited (www.EtherAuthority.io)

Executive Summary
According to the assessment, Customer`s solidity smart contract is well
secured.

You are here

We used various tools like SmartDec, Mythril, Slither and Remix IDE. At
the same time this finding is based on critical analysis of the menual audit.
All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section.
General overview is presented in AS-IS section and all found issues can
be found in the Audit overview section.

We found 0 high, 1 medium and 1 low and some very low level issues.

Code Quality
WhaleSwap protocol consists of three smart contract files. These smart

contracts also contain safeMath, SafeBEP20, IBEP20, Ownable. These

are compact and well written contracts.

The libraries in the WhaleSwap protocol are part of its logical algorithm. A

library is a different type of smart contract that contains reusable code.

Once deployed on the blockchain (only once), it is assigned a specific

address and its properties / methods can be reused many times by other

contracts in the WhaleSwap protocol.

The WhaleSwap team has not provided scenario and unit test scripts,

which would help to determine the integrity of the code in an automated

way.

EtherAuthority Limited (www.EtherAuthority.io)

Overall, the code is not well commented. Commenting can provide rich

documentation for functions, return variables and more. Use of Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

Documentation

As mentioned above, It is not well commented smart contract code, so

anyone can not quickly understand the programming flow as well as

complex code logic.

We were given a WhaleSwap contract in the form of a file. The hash of

that file is mentioned above in the table.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provided a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies
As per our observation, the libraries are used in this smart contract

infrastructure that are based on well known industry standard open source

projects. And even core code blocks are written well and systematically.

EtherAuthority Limited (www.EtherAuthority.io)

AS-IS overview

MasterChef.sol contract overview

MasterChef is a liquidity pool with rewards in Whale token. Following are
the main components whose details are explicitly recorded.

(1) Imports:

(a) SafeMath.sol

(b) IBEP20.sol

(c) SafeBEP20.sol

(d) Ownable.sol

(e) WhaleToken.sol

(2) Usages

(a) SafeMath for uint256

(b) SafeBEP20 for IBEP20

(3) Struct

(a) UserInfo - holds all the users information

(b) PoolInfo - holds all the pool information

(4) Events

(a) event Deposit(address indexed user, uint256 indexed pid, uint256

amount);

(b) event Withdraw(address indexed user, uint256 indexed pid, uint256

amount);

(c) event EmergencyWithdraw(address indexed user, uint256 indexed pid,

uint256 amount);

EtherAuthority Limited (www.EtherAuthority.io)

(5) Functions

Sl. Function Type Observation Conclusion Score
1 poolLength read Passed No Issue Passed
2 add write Passed Need

Validation
Passed

3 set write Passed No Issue Passed
4 getMultiplier read Passed No Issue Passed
5 pendingEgg read Passed No Issue Passed
6 massUpdatePools write Passed Gas Limit

Possibility
Passed

7 updatePool write Passed No Issue Passed
8 deposit write Passed No Issue Passed
9 withdraw write Passed No Issue Passed

10 emergencyWithdraw write Passed No Issue Passed
11 safeEggTransfer Internal Passed No Issue Passed
12 dev write Passed No Issue Passed
13 setFeeAddress write Passed No Issue Passed
14 updateEmissionRate write Passed No Issue Passed

TimeLock.sol contract overview

Timelock contract queues and executes the transactions. Following are
the main components whose details are explicitly recorded.

(1) Imports:

(a) SafeMath.sol

(2) Events

(a) event NewAdmin(address indexed newAdmin);

(b) event NewPendingAdmin(address indexed newPendingAdmin);

(c) event NewDelay(uint indexed newDelay);

(d) event CancelTransaction(bytes32 indexed txHash, address indexed target,

uint value, string signature, bytes data, uint eta);

(e) event ExecuteTransaction(bytes32 indexed txHash, address indexed

target, uint value, string signature, bytes data, uint eta);

(f) event QueueTransaction(bytes32 indexed txHash, address indexed target,

uint value, string signature, bytes data, uint eta);

EtherAuthority Limited (www.EtherAuthority.io)

(3) Functions

Sl. Function Type Observation Conclusion Score
1 receive write Passed No Issue Passed
2 setDelay write Passed No Issue Passed
3 acceptAdmin write Passed No Issue Passed
4 setPendingAdmin write Passed No Issue Passed
5 queueTransaction write Passed No Issue Passed
6 cancelTransaction write Passed No Issue Passed
7 executeTransaction write Passed No Issue Passed
8 getBlockTimestamp read Passed No Issue Passed

WhaleToken.sol contract overview

WhaleToken is a BEP20 standard token. It has functionality for voting for
governance. Following are the main components whose details are
explicitly recorded.

(1) Imports:

(a) BEP20.sol

(2) Struct

(a) Checkpoint

(3) Events

(a) event DelegateChanged(address indexed delegator, address indexed

fromDelegate, address indexed toDelegate);

(b) event DelegateVotesChanged(address indexed delegate, uint

previousBalance, uint newBalance);

EtherAuthority Limited (www.EtherAuthority.io)

(4) Functions

Sl. Function Type Observation Conclusion Score
1 mint write Passed No Issue Passed
2 delegates read Passed No Issue Passed
3 delegate write Passed No Issue Passed
4 delegateBySig write Passed No Issue Passed
5 getCurrentVotes read Passed No Issue Passed
6 getPriorVotes read Passed No Issue Passed
7 _delegate internal Passed No Issue Passed
8 _moveDelegates internal Passed No Issue Passed
9 _writeCheckpoint internal Passed No Issue Passed

10 safe32 read Passed No Issue Passed
11 getChainId read Passed No Issue Passed

Severity Definitions
Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.
High-level vulnerabilities are difficult to exploit;

High however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

EtherAuthority Limited (www.EtherAuthority.io)

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

(1) Gas limit possibility: massUpdatePools function in MasterChef smart

contract might hit the gas limit if the pool size is big.

Low

(1) Validation for _lpToken parameter in the add function in MasterChef

smart contract should be added. This is to make sure that is not being

setup incorrectly by mistake. Although this is owner only functions, so

the chance of raising this issue is low. But still, it's a good idea to put

some validations.

Discussion:

(1) Overpowered functions: There are some functions which are

authorised persons (set, updateEmissionRate, setFeeAddress) only.

And it would be troublesome if its private key would be compromised.

(2) Approve of ERC20 standard: This can be used to front run. From the

client side, only use this function to change the allowed amount to 0 or

from 0 (wait till transaction is mined and approved).

(3)User latest solidity compiler version.

EtherAuthority Limited (www.EtherAuthority.io)

Conclusion

We were given contract files. And we have used all possible tests based

on given objects as files. The contracts are written so systematic, that we

did not find any major issues. So it is good to go for production.

Since possible test cases can be unlimited for such extensive smart

contract protocol, so we provide no such guarantee of future outcomes.

We have used all the latest static tools and manual observations to cover

maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed

with static analysis tools. Smart Contract’s high level description of

functionality was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in

the reviewed code.

Security state of the reviewed contract is “Well Secured ”.

EtherAuthority Limited (www.EtherAuthority.io)

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the

quality of systems we review and aim for sufficient remediation to help

protect users. The following is the methodology we use in our security

audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues

with code logic, error handling, protocol and header parsing,

cryptographic errors, and random number generators. We also watch for

areas where more defensive programming could reduce the risk of future

mistakes and speed up future audits. Although our primary focus is on

the in-scope code, we examine dependency code and behavior when it

is relevant to a particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's

web site to get a high level understanding of what functionality the

software under review provides. We then meet with the developers to

gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While

we do this, we brainstorm threat models and attack surfaces. We read

design documentation, review other audit results, search for similar

projects, examine source code dependencies, skim open issue

tickets, and generally investigate details other than the implementation.

EtherAuthority Limited (www.EtherAuthority.io)

Documenting Results:
We follow a conservative, transparent process for analyzing potential

security vulnerabilities and seeing them through successful remediation.

Whenever a potential issue is discovered, we immediately create an

Issue entry for it in this document, even though we have not yet verified

the feasibility and impact of the issue. This process is conservative

because we document our suspicions early even if they are later shown

to not represent exploitable vulnerabilities. We generally follow a process

of first documenting the suspicion with unresolved questions, then

confirming the issue through code analysis, live experimentation, or

automated tests. Code analysis is the most tentative, and we strive to

provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live

system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for

future releases. The mitigation and remediation recommendations

should be scrutinized by the developers and deployment engineers, and

successful mitigation and remediation is an ongoing collaborative

process after we deliver our report, and before the details are made

public.

EtherAuthority Limited (www.EtherAuthority.io)

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with
the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code,
the details of which are disclosed in this report, (Source Code); the
Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, so the
audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only. We also suggest to conduct a bug bounty program to
confirm the high level of security of this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the
smart contract can have their own vulnerabilities that can lead to hacks.
Thus, the audit can’t guarantee explicit security of the audited smart
contracts.

EtherAuthority Limited (www.EtherAuthority.io)

EtherAuthority Limited (www.EtherAuthority.io)

