
VANILLA CAKE (VCAKE) TOKEN
SMART CONTRACT CODE REVIEW
AND SECURITY ANALYSIS REPORT

Customer​:​ Vanillacake Team (https://vanillacake.farm)
Prepared on​: 10/05/2021
Platform: Binance Smart Chain
Language: Solidity
Audit Type: Standard

audit@etherauthority.io

Table of contents

Project File 4

Introduction 4

Quick Stats 5

Executive Summary 6

Code Quality 6

Documentation 7

Use of Dependencies 7

AS-IS overview 8

Severity Definitions 8

Audit Findings 11

Conclusion 15

Our Methodology 16

Disclaimers 17

Appendix

● Code Flow Diagram 18

● Slither Report Log 19

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.

Project file

Name Code Review and Security Analysis
Report for VanillaCake (VCAKE) Token
Smart Contract

Platform BSC / Solidity

File VcakeToken.sol

File MD5 hash FE9A1E895AAEB082D1091EF68E2E053C

Online Contract
Code

https://bscscan.com/address/0xb86F1e870DbE2
9629134Cb52f568575D819ee0a9#code

Introduction
We were contracted by the VanillaCake team to perform the Security audit of
the VanillaCake Token smart contract code. The audit has been performed
using manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on 10/05/2021.

The Audit type was Standard Audit. Which means this audit is concluded
based on Standard audit scope, which is one security engineer performing
audit procedure for 3 days. This document outlines all the findings as well as
an AS-IS overview of the smart contract codes.

https://bscscan.com/address/0xb86F1e870DbE29629134Cb52f568575D819ee0a9#code
https://bscscan.com/address/0xb86F1e870DbE29629134Cb52f568575D819ee0a9#code

Quick Stats:

Main
Category

Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks
management

Passed

Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use

vulnerability
N/A

Fallback function misuse Passed
Race condition Passed

Logical vulnerability Passed
Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed
Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Other code specification issues Passed
Gas

Optimization
Assert() misuse Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed
Business Risk The maximum limit for mintage not set Not Set

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED WITH CONSENT

Executive Summary
According to the standard audit assessment, Customer`s solidity smart
contract is Well secured.

You are here

We used various tools like Mythril, Slither and Remix IDE. At the same time
this finding is based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section. General
overview is presented in AS-IS section and all identified issues can be found
in the Audit overview section.

We found 1 medium and 1 low and some very low level issues.

Code Quality
VanillaCake Token smart contract has 1 smart contract. This smart contract

also contains Libraries, Smart contract inherits and Interfaces. These are

compact and well written contracts.

The libraries in the VanillaCake Token protocol are part of its logical algorithm.

A library is a different type of smart contract that contains reusable code.

Once deployed on the blockchain (only once), it is assigned a specific

address and its properties / methods can be reused many times by other

contracts in the VanillaCake Token protocol.

The VanillaCake team has not provided scenario and unit test scripts, which

would have helped to determine the integrity of the code in an automated

way.

Overall, code parts are well commented (except some parts). Commenting

can provide rich documentation for functions, return variables and more.

Documentation

We were given VanillaCake token smart contracts code in the form of a

BscScan web link. The hash of that code and that web link are mentioned

above in the table.

As mentioned above, most code parts are well commented. so anyone can

quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol.

Another source of information was its official website which provided rich

information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract

infrastructure that are based on well known industry standard open source

projects. And their core code blocks are written well.

Apart from libraries, VanillaCake token smart contract does not depend on

any other smart contracts as external smart contract calls.

AS-IS overview

VanillaCake Token is a BEP20 standard smart contract, with other features
like minting, governance, etc. Following are the main components of core
smart contract.

VcakeToken.sol

(1) Interfaces
(a) IBEP20: Provides BEP20 standard functions and events.

(2) Inherited contracts
(a) BEP20: Provides BEP20 standard functions.

(b) MinterRole: Provides minting functions.

(c) Ownable: Ownership contract.

(d) Context: Context contract.

(3) Usages
(a) using SafeMath for uint256;

(b) using Address for address;

(4) Events
(a) event OwnershipTransferred(address indexed previousOwner, address

indexed newOwner);

(b) event Transfer(address indexed from, address indexed to, uint256

value);

(c) event Approval(address indexed owner, address indexed spender,

uint256 value);

(d) event MinterAdded(address indexed account);

(e) event MinterRemoved(address indexed account);

(f) event DelegateChanged(address indexed delegator, address indexed

fromDelegate, address indexed toDelegate);

(g) event DelegateVotesChanged(address indexed delegate, uint

previousBalance, uint newBalance);

(5) Functions

Sl. Functions Type Observation Conclusion
1 name read Passed No Issue
2 decimals read Passed No Issue
3 symbol read Passed No Issue
4 totalSupply read Passed No Issue
5 balanceOf read Passed No Issue
6 transfer write Passed No Issue
7 allowance read Passed No Issue
8 approve write Passed No Issue
9 transferFrom write Passed No Issue

10 increaseAllowance write Passed No Issue
11 decreaseAllowance write Passed No Issue
12 _transfer internal Passed No Issue
13 _mint internal No Max

minting set
Minter should

mint
responsibly

14 _burn internal Not used
anywhere

No Issue

15 _approve internal Passed No Issue
16 _burnFrom internal Not used

anywhere
No Issue

17 _burn internal Passed No Issue
18 isMinter read Passed No Issue
19 addMinter write Passed No Issue
20 removeMinter write Passed No Issue
21 renounceMinter write Passed No Issue
22 _addMinter internal Passed No Issue
23 _removeMinter internal Passed No Issue
24 mint write No Max

minting set
Minter should

mint it
responsibly

25 delegates read Passed No Issue
26 delegate write Passed No Issue

27 delegateBySig write Sig was used Keep sig
secure

28 getCurrentVotes read Passed No Issue
29 getPriorVotes read Infinite loop

possibility
Keep array

length limited
30 _delegate internal Passed No Issue
31 _moveDelegates internal Passed No Issue
32 _writeCheckpoint internal Passed No Issue
33 safe32 read Passed No Issue
34 getChainId read Passed No Issue

Severity Definitions
Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.
High-level vulnerabilities are difficult to exploit;

High however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No High severity vulnerabilities were found.

Medium

No Max minting of the tokens set.

Setting max minting for the tokens is good for the tokenomics. Since this is an

owner(miner) function, the owner must take care of minting with limitation. or

even better, just add a max minting limit.

Fix: We got confirmation from the VanillaCake token team that tokens will be

minted by masterChef contract as well as token sale contract. And minting

will be done as needed by those contracts. So this issue is acknowledged.

Low

(1) Infinite loop possibility

If there are so many nCheckpoints, then this logic will fail. Because it might hit

the block’s gas limit. If there are very limited nCheckpoints, then this will work.

Fix: This issue is acknowledged.

Very Low / Discussion / Best practices:

(1) Solidity Version can be fixed

Use the latest solidity version while contract deployment to prevent any

compiler version level bugs.

Solution: This issue is acknowledged.

(2) Any minter can add/remove any other minters. So, the private key of

those minters should be kept secret. Because if that would be compromised,

then it will put the smart contract’s fate into hands of the attacker.

(3) Approve of ERC20 standard.

This can be used to front run. From the client side, only use this function to

change the allowed amount to 0 or from 0 (wait till transaction is mined and

approved).

(4) Ownership functions not used

There are no owner only functions.

Solution: It's better to remove ownership contract to make the code clean. Or

just renounce the ownership, so users can feel safe thinking owner also can

not do any manipulations.

(5) All functions which are not called internally, must be declared as external.

It is more efficient as sometimes it saves some gas.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best

-practices

Centralization
This smart contract has some functions which can be executed by Admin

(Minter) only. If the admin wallet private key would be compromised, then it

puts this smart contract in the hands of an attacker. Following are Admin

functions:

● addMinter

● removeMinter

● mint

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices
https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Conclusion

We were given a contract code. And we have used all possible tests based

on given objects as files. We observed some issues in the smart contract and

those are fixed/ackolenged in the smart contract. So it is good to go for the

production.

Since possible test cases can be unlimited for such extensive smart contract

protocol, we provide no such guarantee of future outcomes. We have used all

the latest static tools and manual observations to cover maximum possible

test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with

static analysis tools. Smart Contract’s high level description of functionality

was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security state of the reviewed contract, based on standard audit procedure

scope, is “Well Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web site

to get a high level understanding of what functionality the software under

review provides. We then meet with the developers to gain an appreciation of

their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm

threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code

dependencies, skim open issue tickets, and generally investigate details other

than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and impact

of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyze the feasibility of an

attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinized by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the
best industry practices at the date of this report, in relation to: cybersecurity
vulnerabilities and issues in smart contract source code, the details of which
are disclosed in this report, (Source Code); the Source Code compilation,
deployment and functionality (performing the intended functions).

Due to the fact that the total number of test cases are unlimited, so the audit
makes no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the
code, bugfree status or any other statements of the contract. While we have
done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only. We also suggest
to conduct a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have their own vulnerabilities that can lead to hacks. Thus, the
audit can’t guarantee explicit security of the audited smart contracts.

Appendix
Code Flow Diagram - Vcake Token

Slither Results Log

INFO:Detectors:
VcakeToken._writeCheckpoint(address,uint32,uint256,uint256)
(VcakeToken.sol#1161-1179) uses
a dangerous strict equality:
- nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock ==
blockNumber (VcakeToken.sol#1171)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strictequalities
INFO:Detectors:
BEP20.constructor(string,string).name (VcakeToken.sol#604) shadows:
- BEP20.name() (VcakeToken.sol#620-622) (function)
- IBEP20.name() (VcakeToken.sol#129) (function)
BEP20.constructor(string,string).symbol (VcakeToken.sol#604) shadows:
- BEP20.symbol() (VcakeToken.sol#634-636) (function)
- IBEP20.symbol() (VcakeToken.sol#124) (function)
BEP20.allowance(address,address).owner (VcakeToken.sol#668) shadows:
- Ownable.owner() (VcakeToken.sol#65-67) (function)
BEP20._approve(address,address,uint256).owner (VcakeToken.sol#840) shadows:
- Ownable.owner() (VcakeToken.sol#65-67) (function)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
VcakeToken.delegateBySig(address,uint256,uint256,uint8,bytes32,bytes32)
(VcakeToken.sol#1027-1068) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string)(now <= expiry,TOKEN::delegateBySig: signature expired)
(VcakeToken.sol#1066)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Address.isContract(address) (VcakeToken.sol#417-428) uses assembly
- INLINE ASM (VcakeToken.sol#424-426)
Address._functionCallWithValue(address,bytes,uint256,string) (VcakeToken.sol#525-551)
uses
assembly
- INLINE ASM (VcakeToken.sol#543-546)
VcakeToken.getChainId() (VcakeToken.sol#1186-1190) uses assembly
- INLINE ASM (VcakeToken.sol#1188)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
Different versions of Solidity is used in :
- Version used: ['0.6.12', '>=0.4.0']
- >=0.4.0 (VcakeToken.sol#7)
- 0.6.12 (VcakeToken.sol#867)
- 0.6.12 (VcakeToken.sol#905)
- 0.6.12 (VcakeToken.sol#952)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragmadirectives-
are-used
INFO:Detectors:
Pragma version>=0.4.0 (VcakeToken.sol#7) allows old versions
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-ofsolidity
INFO:Detectors:
Low level call in Address.sendValue(address,uint256) (VcakeToken.sol#446-452):
- (success) = recipient.call{value: amount}() (VcakeToken.sol#450)
Low level call in Address._functionCallWithValue(address,bytes,uint256,string)
(VcakeToken.sol#525-551):

- (success,returndata) = target.call{value: weiValue}(data) (VcakeToken.sol#534)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Parameter VcakeToken.mint(address,uint256)._to (VcakeToken.sol#957) is not in
mixedCase
Parameter VcakeToken.mint(address,uint256)._amount (VcakeToken.sol#957) is not in
mixedCase
Variable VcakeToken._delegates (VcakeToken.sol#969) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-soliditynamin
g-
conventions
INFO:Detectors:
Redundant expression "this (VcakeToken.sol#29)" inContext (VcakeToken.sol#19-32)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
INFO:Detectors:
owner() should be declared external:
- Ownable.owner() (VcakeToken.sol#65-67)
renounceOwnership() should be declared external:
- Ownable.renounceOwnership() (VcakeToken.sol#84-87)
transferOwnership(address) should be declared external:
- Ownable.transferOwnership(address) (VcakeToken.sol#93-95)
decimals() should be declared external:
- BEP20.decimals() (VcakeToken.sol#627-629)
symbol() should be declared external:
- BEP20.symbol() (VcakeToken.sol#634-636)
totalSupply() should be declared external:
- BEP20.totalSupply() (VcakeToken.sol#641-643)
transfer(address,uint256) should be declared external:
- BEP20.transfer(address,uint256) (VcakeToken.sol#660-663)
allowance(address,address) should be declared external:
- BEP20.allowance(address,address) (VcakeToken.sol#668-670)
approve(address,uint256) should be declared external:
- BEP20.approve(address,uint256) (VcakeToken.sol#679-682)
transferFrom(address,address,uint256) should be declared external:
- BEP20.transferFrom(address,address,uint256) (VcakeToken.sol#696-708)
increaseAllowance(address,uint256) should be declared external:
- BEP20.increaseAllowance(address,uint256) (VcakeToken.sol#722-725)
decreaseAllowance(address,uint256) should be declared external:
- BEP20.decreaseAllowance(address,uint256) (VcakeToken.sol#741-748)
addMinter(address) should be declared external:
- MinterRole.addMinter(address) (VcakeToken.sol#928-930)
removeMinter(address) should be declared external:
- MinterRole.removeMinter(address) (VcakeToken.sol#932-934)
renounceMinter() should be declared external:
- MinterRole.renounceMinter() (VcakeToken.sol#936-938)
mint(address,uint256) should be declared external:
- VcakeToken.mint(address,uint256) (VcakeToken.sol#957-960)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-thatcould-
be-declared-external
INFO:Slither:VcakeToken.sol analyzed (9 contracts with 72 detectors), 33 result(s) found
INFO:Slither:Use https://crytic.io/ to get access to additional detectors and Github
integration

