
SUSTAINABILITY CREATIVE
ESHARE (SCCs) SMART

CONTRACT CODE REVIEW
AND SECURITY ANALYSIS

REPORT

Customer​:​ SustainabilityCreative.com
Prepared on​: 05/05/2021
Platform: Ethereum
Language: Solidity
Audit Type: Standard

audit@etherauthority.io

Table of contents

Document 4

Introduction 4

Quick Stats 5

Executive Summary 6

Code Quality 6

Documentation 7

Use of Dependencies 7

AS-IS overview 8

Severity Definitions 9

Audit Findings 9

Conclusion 12

Our Methodology 13

Disclaimers 15

EtherAuthority Limited (www.EtherAuthority.io)

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.

EtherAuthority Limited (www.EtherAuthority.io)

Document

Name Code Review and Security Analysis Report for
Sustainability Creative eShare (SCCs) Token
Smart Contract

Platform Ethereum / Solidity

File name SCC_eShare.sol

MD5 hash B12D973D748A589959E687244F04A1B0

SHA256 hash
ED431ED044A03798583BC90C2E0CD5550FEAD6
1388F0BD5858A5E91878B5D933

Testnet code URL
https://rinkeby.etherscan.io/address/0x76b22ca4
86ef3f840f3743f06c84bb4ba930cd7a#code

Introduction
We were contracted by the Sustainability Creative team to perform the
Security audit of the SCC_eShare smart contracts code. The audit has been
performed using manual analysis as well as using automated software tools.
This report presents all the findings regarding the audit performed on
05/05/2021.

Audit type was Standard Audit. Which means one senior auditor performing
an audit for 2 days. So, this audit is concluded based on standard audit
scope. And because the use case scenarios are unlimited, it is encouraged
to perform an Extensive audit (which is performed by 2 or more auditors for
about 4 days) to come to a more solid conclusion.

EtherAuthority Limited (www.EtherAuthority.io)

https://rinkeby.etherscan.io/address/0x76b22ca486ef3f840f3743f06c84bb4ba930cd7a#code
https://rinkeby.etherscan.io/address/0x76b22ca486ef3f840f3743f06c84bb4ba930cd7a#code

Quick Stats:

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version too old Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code
Specification

Visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas
Optimization

Assert() misuse Passed

High consumption ‘for/while’ loop N/A

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

Overall Audit Result: PASSED

EtherAuthority Limited (www.EtherAuthority.io)

Executive Summary
According to the standard audit assessment, Customer`s solidity smart
contract is well secured. Again, it is recommended to perform an Extensive
audit assessment to bring a more assured conclusion.

you are here

We used various tools like SmartDec, Mythril, Slither and Remix IDE. At the
same time this finding is based on critical analysis of the menual audit.
All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section.
General overview is presented in AS-IS section and all found issues can be
found in the Audit overview section.

We found 0 high, 0 medium and 0 low and 0 very low level issues.

Code Quality
SCC_eShare consists of one smart contract file. This smart contract also

contains inherited Regulated and Ownable smart contracts. These are

compact and well written contracts.

Libraries used in the SCC_eShare are part of its logical algorithm. They are

smart contracts which contain reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties /

methods can be reused many times by other contracts in the Sustainability

Creative SCCs Token protocol.

EtherAuthority Limited (www.EtherAuthority.io)

The Sustainability Creative team has not provided scenario and unit test

scripts, which would help to determine the integrity of the code in an

automated way.

Overall, the code is well commented. Commenting can provide rich

documentation for functions, return variables and more.

Documentation

As mentioned above, It is a well commented smart contract code. However,

this is pretty straightforward ERC20 standard Token smart contract code,

with additional features.

We were given a SCC_eShare smart contract code in the form of a file. The

hash of that code is mentioned above in the table.

Other source of the information was obtained from its official website.

Use of Dependencies
As per our observation, the libraries are used in this smart contract

infrastructure that are based on well known industry standard open source

projects. And even core code blocks are written well and systematically.

EtherAuthority Limited (www.EtherAuthority.io)

AS-IS overview

SCC_eShare.sol contract overview

It is an ERC20 token contract with additional features like acceptETH,
regulation, etc.

(1) Libraries

(a) using SafeMath for uint256

(2) Interfaces

(a) ERC20Interface: An interface for ERC20 token standard

(3) Inherits

(a) Context: This provides context like msg.sender and msg.value

(b) Ownable: This manages all ownership functionalities

(c) Regulated: Regulates for the shareholders

(d) AcceptEth: Accepts and refunds ETH from owne

(4) Functions:

Sl. Function Type Observation Conclusion Score
1 DissolveBusiness write Passed No Issue Passed
2 Registershareholder read Passed No Issue Passed
3 NevadaBlackBook write Passed No Issue Passed
4 ensureRegulated read Passed No Issue Passed
5 isRegulated read Passed No Issue Passed
6 AcceptRefund write Passed No Issue Passed
7 issue write Passed No Issue Passed
8 transferOwnership write Passed No Issue Passed
9 totalSupply write Passed No Issue Passed

10 balanceOf write Passed No Issue Passed
11 transfer write Passed No Issue Passed
12 approve write Passed No Issue Passed
13 transferFrom write Passed No Issue Passed
14 allowance write Passed No Issue Passed
15 transferotherERC20Assest write Passed No Issue Passed

EtherAuthority Limited (www.EtherAuthority.io)

Severity Definitions
Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to token loss etc.
High-level vulnerabilities are difficult to exploit;

High however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

EtherAuthority Limited (www.EtherAuthority.io)

Very Low / Best Practices

(1) Approve of ERC20 standard: This can be used to front-run. From the

client side, only use this function to change the allowed amount to 0 or from

0 (wait till transaction is mined and approved). This should be done from the

client side.

(2) Use visibility ‘external’ over ‘public’. This is good practice.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-be

st-practices/19391

Centralization

There are several owner only functions. Those can be called by the owner's

wallet only. So, if the owner's wallet is compromised, then it carries the risk

of the contract becoming vulnerable to unexpected fate.

● DissolveBusiness : owner can dissolve business any moment

● RegisterShareholder : only Owner can register shareholders

● Accept : to accept ether

● Refund : to refund ether

● Issue : only owner can issue token.

● transferOwnership : Owner can transfer owner to another wallet

EtherAuthority Limited (www.EtherAuthority.io)

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices/19391
https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices/19391

Conclusion

We were given contract code. And we have used all possible tests based on

given objects as files. The contracts are written so systematic, that we did

not find any major issues. So it is good to go for production.

Since possible test cases can be unlimited for such extensive smart contract

protocol, so we provide no such guarantee of future outcomes. We have

used all the latest static tools and manual observations to cover maximum

possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with

static analysis tools. Smart Contract’s high level description of functionality

was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security state of the reviewed contract is “Well Secured ”.

EtherAuthority Limited (www.EtherAuthority.io)

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the

quality of systems we review and aim for sufficient remediation to help

protect users. The following is the methodology we use in our security

audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues

with code logic, error handling, protocol and header parsing,

cryptographic errors, and random number generators. We also watch for

areas where more defensive programming could reduce the risk of future

mistakes and speed up future audits. Although our primary focus is on

the in-scope code, we examine dependency code and behavior when it

is relevant to a particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's

web site to get a high level understanding of what functionality the

software under review provides. We then meet with the developers to

gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While

we do this, we brainstorm threat models and attack surfaces. We read

design documentation, review other audit results, search for similar

projects, examine source code dependencies, skim open issue

tickets, and generally investigate details other than the implementation.

EtherAuthority Limited (www.EtherAuthority.io)

Documenting Results:
We follow a conservative, transparent process for analyzing potential

security vulnerabilities and seeing them through successful remediation.

Whenever a potential issue is discovered, we immediately create an

Issue entry for it in this document, even though we have not yet verified

the feasibility and impact of the issue. This process is conservative

because we document our suspicions early even if they are later shown

to not represent exploitable vulnerabilities. We generally follow a process

of first documenting the suspicion with unresolved questions, then

confirming the issue through code analysis, live experimentation, or

automated tests. Code analysis is the most tentative, and we strive to

provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live

system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for

future releases. The mitigation and remediation recommendations

should be scrutinized by the developers and deployment engineers, and

successful mitigation and remediation is an ongoing collaborative

process after we deliver our report, and before the details are made

public.

EtherAuthority Limited (www.EtherAuthority.io)

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with
the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code,
the details of which are disclosed in this report, (Source Code); the
Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, so the
audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only. We also suggest to conduct a bug bounty program to
confirm the high level of security of this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the
smart contract can have their own vulnerabilities that can lead to hacks.
Thus, the audit can’t guarantee explicit security of the audited smart
contracts.

EtherAuthority Limited (www.EtherAuthority.io)

EtherAuthority Limited (www.EtherAuthority.io)

