@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Customer: NFTMeme

Website: https://catecoin.club
Platform: Binance Smart Chain
Language: Solidity

Date: July 17th, 2021

https://catecoin.club/

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 13
AUt FINAINGS oo e 13
@70 o T3 1017 T o 21
(@ 0] 1Y/ =1 1 T To [o] 0T) 22
DISCIAIMEIS ... e 24
Appendix

o Code FIoW Diagramououoiiii s 25

® Slither REpPOrt LOg ... e 26

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.2et92p0
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.tyjcwt
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.4d34og8

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the CateCoin team to perform the Security audit of the
NFTMeme smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on July 17th, 2021.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

NFTMeme Platform where meme creators will submit memes and get paid by users in

CateCoin, Whole system will be decentralised.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit scope

Name Code Review and Security Analysis Report for
NFTMeme token Smart Contract

Platform BSC / Solidity

File NFTMeme.sol

Smart Contract Online
Code

https://bscscan.com/address/0xc30b6f7ADc735FcD7B38
BaC2B6F05b50482481eB#code

File MD5 Hash

88AA8B0OB7697A17D156876E1961A9E1A

Audit Date

July 17th, 2021

Updated Smart
Contract Online Code

https://bscscan.com/address/0x7C331FFD3EB1FC89a7
562258597225cC5cC48f7E#code

Updated File MD5 Hash

124F37740222596463869894E591FCSE

Revised Audit Date

July 19th, 2021

Updated Smart
Contract Online Code

https://bscscan.com/address/0x2F9FbB154e6C3810f8B
2D786cB863F8893E43354#code

Updated File MD5 Hash

FA25B7323424A89A5C65F9AB4266BFE1

Revised Audit Date

July 22nd, 2021

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0xc30b6f7ADc735FcD7B38BaC2B6F05b50482481eB#code
https://bscscan.com/address/0xc30b6f7ADc735FcD7B38BaC2B6F05b50482481eB#code
https://bscscan.com/address/0x7C331FFD3EB1FC89a7562258597225cC5cC48f7E#code
https://bscscan.com/address/0x7C331FFD3EB1FC89a7562258597225cC5cC48f7E#code
https://bscscan.com/address/0x2F9FbB154e6C3810f8B2D786cB863F8893E43354#code
https://bscscan.com/address/0x2F9FbB154e6C3810f8B2D786cB863F8893E43354#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Name: NFTMeme

YES, This is valid.

Penalty: 20%

YES, This is valid. The smart contract

owner can change this anytime.

Minimum Stake Time: 31 days

YES, This is valid. The smart contract

owner can change this anytime.

Minimum Likes To Buy Meme: 500

YES, This is valid. The smart contract
owner can change this anytime.

Removed

APY:10%

YES, This is valid. The smart contract

owner can change this anytime.

e The Owner can access functions like
changeEnabled,
changeMinimumtokensForPost,
changeMinimumtokensForLike,
changeMinimumtokensForComment
, changeMinimumLikesToBuyMeme

(Removed), etc.

YES, This is valid.The smart contract
owner controls these functions, so the
owner must handle the private key of
the owner's wallet very securely.
Because if the private key is
compromised, then it will create

problems.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. These contracts also have owner functions (described in the centralization
section below), which does not make everything 100% decentralized. Thus, the owner
must execute those smart contract functions as per the business plan.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like MythX, Slither and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

These issues can be fixed/acknowledged in the revised smart contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old

Integer overflow/underflow Passed

Function input parameters lack of check
Function input parameters check bypass Passed
Function access control lacks management Passed

Critical operation lacks event log

Human/contract checks bypass Passed
Random number generation/use vulnerability Passed
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated
Other code specification issues Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse

Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract. This smart contract also contains Libraries, Smart

contracts inherits and Interfaces. These are compact and well written contracts.

The libraries in the NFTMeme token are part of its logical algorithm. A library is a different
type of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the NFTMeme token.

The NFTMeme team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts.

Documentation

We were given NFTMeme token smart contracts code in the form of a BscScan web link.

The hashes of that code are mentioned above in the table.
As mentioned above, some code parts are not well commented. So it is difficult to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://catecoin.club/ which provided

rich information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are
based on well known industry standard open source projects. And their core code blocks

are written well.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://catecoin.club/

AS-IS overview

NFTMeme.sol

(1) Interface
(a) IERC165

(2) Inherited contracts
(a) IRC20
(b) ERC20
(c) IERC721
(d) IERC721Receiver
(e) ERC165
(f) ERC721
(g) IERC721Enumerable
(h) ERC721Enumerable
(i) ERC721Full
(j) ReentrancyGuard
(k) ERC721NFTMarket
() StakeContract

(3) Struct
(a) Meme
(b) Reward
(c) Stake

(4) Usages
(a) using SafeMath for uint256;

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(5) Events
(a) event BuyMeme(uint256 indexed post_id, address indexed from, address indexed
to, uint256 value);
(b) event Claim(address indexed user, bool like, bool comment, bool post, uint256[]
posts);
(c) event Like(address indexed user, uint256 indexed post_id);
(d) event Comment(address indexed user, uint256 indexed post_id);

(e) event CreateMeme(address indexed user, uint256 indexed post_id, uint256 nft_id);

(6) Functions

Sl. Functions Type Observation Conclusion
1 | user pending posts likes length read Passed No Issue
2 | user_pending_posts_comment_| read Passed No Issue
ength
3 |owner_pending_posts_likes_leng read Passed No Issue
th
4 | owner_pending_posts_comments read Passed No Issue
length
5 | owner pending posts length read Passed No Issue
6 |setRewards write Critical Refer Audit
operation lacks Findings
event log
7 | createMeme write Passed No Issue
8 [changelsNFT write Critical Refer Audit
operation lacks Findings
event log
9 | changeEnabled write Critical Refer Audit
operation lacks Findings
event log
10 | changeMinimumtokensForPost write Critical Refer Audit
operation lacks Findings
event log
11 | changeMinimumtokensForLike write Functions to set Refer Audit
values for Findings
unused
variables
12 | changeMinimumtokensForComm write Functions to set Refer Audit
ent values for Findings
unused
variables
13 | changeMinimumLikesToBuyMem write Critical Removed
e operation lacks
event log

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

14 | like write Infinite loops Removed
possibility
15 | comment write Infinite loops Removed
possibility
16 | ClaimMyRewards write Require Refer Audit
statements Findings
should be
preferred
instead of IF
Statement
17 | buyMeme write Passed No Issue
18 | stakesOfOwnerLength read Use meaningful Refer Audit
words rather Findings
than alphabets
19 | modifyLimit external access only No Issue
Owner
20 | modifyMinimum external access only No Issue
Owner
21 | modifyAnnuallnterestRatePercent | external access only No Issue
age Owner
22 | modifyMinimumStakeTime external access only No Issue
Owner
23 | modifyPenalty external access only No Issue
Owner
24 | queryOwnersAccounts external access only No Issue
Owner
25 | calculatelnterest read Passed No Issue
26 | checkAvailableLimit read Passed No Issue
27 | hasActiveStakes read Passed No Issue
28 | createStake external Critical Refer Audit
operation lacks Findings
event log
29 | withdrawStake external Critical Refer Audit
operation lacks Findings
event log
30 | queryCollectedPenalty external access only Refer Audit
Owner Findings
31 | withdrawPenalty external Critical Refer Audit
operation lacks Findings
event log
32 | setToken write access only No Issue
Owner
33 | canSell read Passed No Issue
34 | sell write Critical Refer Audit
operation lacks Findings
event log
35 | canBuy read Passed No Issue
36 | buy write Passed No Issue
37 | callOptionalReturn write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

38 | updateAdmin write Critical Refer Audit
operation lacks Findings
event log
39 [onlyOwner modifier Passed No Issue
40 | nonReentrant modifier Passed No Issue
41 | exists read Passed No Issue
42 | tokensOfOwner read Passed No Issue
43 | autoMint internal Passed No Issue
44 | transfer write Passed No Issue
45 | tokenOfOwnerByIndex read Passed No Issue
46 | totalSupply read Passed No Issue
47 | tokenBylndex read Passed No Issue
48 | transferFrom internal Passed No Issue
49 | mint internal Passed No Issue
50 | tokensOfOwner internal Passed No Issue
51 addTokenToOwnerEnumeration write Passed No Issue
52 | addTokenToAllTokensEnumerati write Passed No Issue
on
53 | _removeTokenFromOwnerEnum write Passed No Issue
eration
54 | totalSupply read Passed No Issue
55 | tokenOfOwnerBylndex read Passed No Issue
56 [tokenBylndex read Passed No Issue
57 | balanceOf read Passed No Issue
58 | ownerOf read Passed No Issue
59 | approve write Passed No Issue
60 [getApproved read Passed No Issue
61 | transferFrom write Passed No Issue
62 [safeTransferFrom write Passed No Issue
63 [exists read Passed No Issue
64 | isApprovedOrOwner internal Passed No Issue
65 | checkOnERC721Received internal Passed No Issue
66 | clearApproval write Passed No Issue
67 | supportsinterface external Passed No Issue
68 | registerinterface internal Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical
No Critical severity vulnerabilities were found.
High

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Low

(1) Infinite loops possibility at multiple places:

// add the unassigned reward to pending for owners and user
/] add amount to pending rewards for owners and users
for(uint256 1=0; i<user_unassigned_posts_likes[_id].length; i++) {

/| users

user_pending posts likes[user_unassigned posts likes[id][1]].push(_id);
total_pending rewards[user_unassigned posts likes[1d][1]] += likes.amount sender;
// owner

owner_pending posts likes[memes[id].owner].push(_id);
total pending_rewards[memes[id].owner] += likes.amount_owner;

There are many functions in the smart contracts, where the Like() function in
user_unassigned_posts_likes[_id].length Comment() function in
user_unassigned_posts _comment[_id].length Variable is used directly in the loops. It is

recommended to put some kind of limits.
Resolution: So it does not go wild and create any scenario where it can hit the block gas
limit.

Status: Fixed

(2) Require statements should be preferred instead of IF Statement:

function ClaimMyRewards() public nonReentrant {

if (total pending rewards[msg.sender] > @) {

// transfer all the rewards to user
token_to_pay.transterfFrom(contract owner, msg.sender, total pending rewards[msg.sender]);

// reset total pending rewards
total pending rewards[msg.sender] = @;

// if the user had likes as user emit claim event and reset

if (user_pending posts likes[msg.sender].length»e) {
emit Claim(msg.sender, true, false, false, user_pending posts likes[msg.sender]);
user_pending posts likes[msg.sender].length = @;

}

// if the user had comments as user emit claim event and reset

if (user_pending posts comment[msg.sender].length>e) {
emit Claim(msg.sender, false, true, false, user_pending posts_comment[msg.sender]);
user pending posts comment[msg.sender].length = 8;

As per the current design of the adjustinterest function, it is a strict requirement that
total_pending_rewards of the user must be more than 0, in order to execute this function
successfully.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: Therefore, it is considered a better practice to use require statements for such
strict validations in a function.
Status: Fixed.

(3) State variables written after the call:

function ClaimMyRewards() public nonReentrant {
if (total pending_rewards[msg.sender] > @) {

// transfer all the rewards to user
token_to _pay.transterfFrom(contract_owner, msg.sender, total pending rewards[msg.sender]);

// reset total pending rewards
total pending rewards[msg.sender] = @;

// if the user had likes as user emit claim event and reset

if (user_pending posts likes[msg.sender].length>@) {
emit Claim(msg.sender, true, false, false, user_pending posts likes[msg.sender]);
user_pending posts likes[msg.sender].length = @;

ClaimMyRewards function has transfer and then sets pending rewards to 0. Same issue in
the withdrawPenalty function.

Resolution: Set pending rewards to 0 before transfer call.

Status: Fixed.

Very Low / Discussion / Best practices:

(1) Use the latest solidity version:

pragma solidity ~8.5.7;

Using the latest solidity will prevent any compiler level bugs.
Resolution: Please use 0.8.6 which is the latest version.
Status: Acknowledged.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Critical operation lacks event log:

// change if the Meme can be sold as NFT or no
function changeIsNFT(uint256 , bool

// validations, only contract owner

require(msg.sender

memes[_1d].is_nft = _1is_nft;

) public {

require(memes[_id].nft_id = @, "this meme is not registered");

contract_owner || msg.sender memes[_1id].owner, "you do not have permission");

/] set rewards parameters

function setRewards (
uint256 .
uint256
uint256 .
uint256 R
uint256 ,
uint256

) public onlyOwner {

likes.amount_owner =
likes.amount_sender =
likes.limit = _limit_likes;

comments.amount_owner =
comments.amount_sender =

posting.amount_owner = _rewards_posting;

_rewards_1like owner;
_rewards_like user;

/] Earnings of
, // Earnings of
/] What is the
// Earnings of
/] Earnings of
/] Earnings

of

_rewards_comments_owner;
_rewards_comments_user;

the owner for liking

the user for liking

minimum number of likes to get the rewards
the owner for commenting

the user for commenting

the owner for postings

function changeEnabled(uint256

memes[id].enabled = enabled;

]

T
J// the admin can ban an NFT for selling or not

bool

require(memes[id].nft_id = ®, "this meme is not registered");

) public onlyOwner{

There are several places in the smart contracts, where not added critical functions call

event logs.

Resolution: Functions are:
e setRewards()
e changelsNFT()
e changeEnabled()
e withdrawPenalty()
e withdrawStake()
e createStake()
e updateAdmin()
o sell()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

.Status: Fixed.

(3) Use keywords/functions to be deprecated:

H; % NFTMeme.sol
(@) SOLIDITY COMPILER g 2 @®Home |3
v B/
- 2 *Submitted for verification at BscScan.com on 2821-87-13
3 */
th 4
5 pragma solidity ~0.8.6;
6
7 [/ 9x163aE0a8D52B85F9fffF4713Da2025d7e20D8Fb5
8 // catecoin token testnet
9
v B10- kontract IRC20 {
11~ /* This is a slight change to the ERC28 base standard.
12 function totalSupply() constant returns (uint256 supply);
13 is replaced with:
14 uint256 public totalSupply;
¥ 15 This automatically creates a getter function for the totalSupply.
16 This is moved to the base contract since public getter functions are not
17 currently recognised as an implementation of the matching abstract
& 18 function by the compiler.
19 *f
20 /// total amount of tokens
% 21 uint256 public totalSupply;
22
B23 /// @param _owner The address from which the balance will be retrieved
e 24 [/ @return The balance
B2s function balanceOf(address _owner) public view returns (uint256 balance);
" 26 +
¥ 0 o listen on network Q Search with transaction hash or addr...

o

Compiled with the latest solidity version on remix.
Resolution: Please use 0.8.6 which is the latest version and fix that syntax errors.

Status: Acknowledged.

(4) Unwanted comments:

// 8x163aEPa8D52B85ToTFTFA713Da2025d7e20D8Fb5
// catecoin token testnet

Unwanted comments found in code.
Resolution: We suggest removing unwanted comments like this.
Status: Fixed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(5) Spelling mistake:

// transter the interes from owner account, it has to have enough funds approved
token to pay.transterFrom(contract owner, msg.sender, interest);

Spelling mistake of Interest.
Resolution: Please correct the spelling from interes to interest.
Status: Fixed.

(6) Unused Library:

JE*
* @title Roles
* [@dev Library for managing addresses assigned to a Role.
* /
library Roles {
struct Role {
mapping(address => bool) bearer;

Roles library is not used anywhere in code.
Resolution: We suggest removing the unwanted library.
Status: Fixed.

(7) Use meaningful words rather than alphabets for parameters:

12. stakesOfOwnerLength

a (address)

a (addr

18}

55)

Query

P P
R -
uint<Lob

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

function stakesOfOwnerLength(address a) public view returns (uint256) {
return stakesOfOwner[a].length;
}

In some functions there is an address parameter .

Resolution: Change the letter a to some meaningful word so in bsc scan users can read it
correctly.

Status: Fixed.

(8) Unused Variable:

// Mapping from owner to operator approvals
mapping(address =» mapping(address => bool)) private _operatorApprovals;

_operatorApprovals is not used in the contract.
Resolution: Remove _operatorApprovals if it's not used.
Status: Fixed.

(9) Missing zero address validation:

Detects missing zero address validation. Constructor updateAdmin has no check for an
address.

Resolution: Check that the address is not zero. Suggest to check the address in the
constructor and updateAdmin.

Status: Fixed in updateAdmin function.

(10) Unused Variable:

uint256 public minimumtokensForlike;
uintise public minimumtokensForComment;

Unused Variable
Resolution: Remove unused variables.

Status: Open.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(11) Functions to set values for unused variables:

function changzMinimumtokensForLike(uint2G6
minimumtokensForLlike = newVal;

function changeMinimumtokensForComment{uint25a
minimumtokensForComment = newval;

) public onlyQwnerd

) public onlyOwner

Functions to set values for unused variables.
Resolution: Remove these functions.

Status: Open.

Centralization

These smart contracts have some functions which can be executed by Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e changeMinimumtokensForPost: The Owner can change minimum tokens for post

and register reward.

e changeMinimumtokensForLike: The owner can change minimum tokens for like

and register reward.

e changeMinimumtokensForComment: The owner can change minimum tokens for

comment and register reward.

e changeMinimumLikesToBuyMeme: The owner can change minimum likes to buy

memes.

changeEnabled: The admin can ban an NFT for selling or not.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We observed some issues in the smart contracts and those issues are

fixed in revised code. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - NFYMemeToken

@ ercau

[Ty

LmosE Max_umMTess

S eee—opEing 8A0rSEE =S UIESS ateves

aasejonoosn
e
&
7,
?
W

@& mosa
= s iwaEuy
= Anwerceon

S Fanamerty

= WA e

s

o rr—

256 minmurmbekensFarPost

000000000
£

LELEL)

[l |

& erECTE Recmivedl)

() ERCT I NFTMarel

LI L)

@& srarecommct

900000000000(00000000

EmcTEiFun
e anrrang,

w G

@) rroTzian

ERcrr

= iranacen

@) ERGTa1Enumarania |

Emciss

Emoret
MR TR Enumeraite

a
-
-
p-
p=

for wint25e

@ emc721 Enumeranis

sEmcT21

o ucasLERy D

=mcres
st

agooooo

= Clickeridenlt

@& =rotes

iEmcies

© myes. ERFACE D orcies
= miianacvest _supporearieraces

@ =roT

sEmcien

Gocennnnse

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> NFTMeme.sol

INFO:Detectors:
StakeContract.createStake(uint256) (NFTMeme.sol#1308-1326) ignores return value by
token_to_pay.transferFrom(msg.sender,address(this),amount) (NFTMeme.sol#1316)
StakeContract.withdrawStake(uint256) (NFTMeme.sol#1330-1374) ignores return value by
token_to_pay.transfer(msg.sender,amountToWithdraw) (NFTMeme.sol#1346)
StakeContract.withdrawStake(uint256) (NFTMeme.sol#1330-1374) ignores return value by
token_to_pay.transferFrom(contract_owner,msg.sender,interest) (NFTMeme.sol#1363)
StakeContract.withdrawStake(uint256) (NFTMeme.sol#1330-1374) ignores return value by
token_to_pay.transfer(msg.sender,stakesOfOwner[msg.sender][arraylndex].amount) (NFTMeme.sol#1366)
StakeContract.withdrawPenalty() (NFTMeme.sol#1380-1383) ignores return value by
token_to_pay.transfer(msg.sender,collectedPenalty) (NFTMeme.sol#1381)
NFTMeme.ClaimMyRewards() (NFTMeme.sol#1693-1740) ignores return value by
token_to_pay.transferFrom(contract_owner,msg.sender,total_pending_rewards[msg.sender])
(NFTMeme.sol#1698)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-transfer
INFO:Detectors:
StakeContract.calculatelnterest(address,uint256) (NFTMeme.sol#1265-1280) performs a multiplication on
the result of a division:
-interest_per_year = stakesOfOwner[_ownerAccount][i].amount.mul(APY).div(100)
(NFTMeme.sol#1268)
-num_seconds.mul(interest_per_year).div(31536000) (NFTMeme.sol#1278)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
INFO:Detectors:
Reentrancy in NFTMeme.ClaimMyRewards() (NFTMeme.sol#1693-1740):
External calls:
- token_to_pay.transferFrom(contract_owner,msg.sender,total_pending_rewards[msg.sender])
(NFTMeme.sol#1698)
State variables written after the call(s):
- total_pending_rewards[msg.sender] = 0 (NFTMeme.sol#1701)
Reentrancy in ERC721NFTMarket.buy(uint256) (NFTMeme.sol#1094-1129):
External calls:
- callOptionalReturn(this,abi.encodeWithSelector(this.transferFrom.selector,owner,msg.sender,tokenld))
(NFTMeme.sol#1105)
- (success,returndata) = address(token).call(data) (NFTMeme.sol#1149)
- success = token_to_pay.transferFrom(msg.sender, wallets[tokenld],amount4owner)
(NFTMeme.sol#1112)
- success?2 = token_to_pay.transferFrom(msg.sender,admin,amount4admin) (NFTMeme.sol#1116)
State variables written after the call(s):
- _wallets[tokenld] = address(0) (NFTMeme.sol#1123)
- sellBidPrice[tokenld] = 0 (NFTMeme.sol#1122)
Reentrancy in NFTMeme.buyMeme(uint256) (NFTMeme.sol#1742-1749):
External calls:
- buy(memeslpost_id].nft_id) (NFTMeme.sol#1746)
- (success,returndata) = address(token).call(data) (NFTMeme.sol#1149)
- success = token_to_pay.transferFrom(msg.sender,_wallets[tokenld],amount4owner)
(NFTMeme.sol#1112)
- success?2 = token_to_pay.transferFrom(msg.sender,admin,amount4admin) (NFTMeme.sol#1116)
State variables written after the call(s):
- memes[post_id].owner = msg.sender (NFTMeme.sol#1748)
Reentrancy in StakeContract.createStake(uint256) (NFTMeme.sol#1308-1326):
External calls:
- token_to_pay.transferFrom(msg.sender,address(this),amount) (NFTMeme.sol#1316)
State variables written after the call(s):
- stakesOfOwner[msg.sender].push(Stake(block.timestamp,amount,0,0,0,false)) (NFTMeme.sol#1324)
Reentrancy in StakeContract.withdrawPenalty() (NFTMeme.sol#1380-1383):
External calls:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

- token_to_pay.transfer(msg.sender,collectedPenalty) (NFTMeme.sol#1381)

State variables written after the call(s):

- collectedPenalty = 0 (NFTMeme.sol#1382)
Reentrancy in StakeContract.withdrawStake(uint256) (NFTMeme.sol#1330-1374):

External calls:

- token_to_pay.transfer(msg.sender,amountToWithdraw) (NFTMeme.sol#1346)

State variables written after the call(s):

- stakesOfOwner[msg.sender][arraylndex].penalty = the_penalty (NFTMeme.sol#1352)

- stakesOfOwner[msg.sender][arraylndex].finishedDate = block.timestamp (NFTMeme.sol#1353)

- stakesOfOwner[msg.sender][arraylndex].closed = true (NFTMeme.sol#1354)
Reentrancy in StakeContract.withdrawStake(uint256) (NFTMeme.sol#1330-1374):

External calls:

- token_to_pay.transferFrom(contract_owner,msg.sender,interest) (NFTMeme.sol#1363)

- token_to_pay.transfer(msg.sender,stakesOfOwner[msg.sender][arraylndex].amount)
(NFTMeme.sol#1366)

State variables written after the call(s):

- stakesOfOwner[msg.sender][arraylndex].interest = interest (NFTMeme.sol#1369)

- stakesOfOwner[msg.sender][arraylndex].finishedDate = block.timestamp (NFTMeme.sol#1370)

- stakesOfOwner[msg.sender][arraylndex].closed = true (NFTMeme.sol#1371)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
INFO:Detectors:
ERC721NFTMarket.updateAdmin(address,address,uint256) (NFTMeme.sol#1159-1164) should emit an
event for:

- contract_owner = _owner (NFTMeme.sol#1162)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-access-control
INFO:Detectors:
ERC721NFTMarket.constructor(address,address,uint256,ERC20)._admin (NFTMeme.sol#1046) lacks a
zero-check on :

- admin = _admin (NFTMeme.sol#1048)
ERC721NFTMarket.constructor(address,address,uint256,ERC20)._owner (NFTMeme.sol#1046) lacks a
zero-check on :

- contract_owner = _owner (NFTMeme.sol#1049)
ERC721NFTMarket.updateAdmin(address,address,uint256)._admin (NFTMeme.sol#1159) lacks a
zero-check on :

- admin = _admin (NFTMeme.sol#1161)
ERC721NFTMarket.updateAdmin(address,address,uint256). _owner (NFTMeme.sol#1159) lacks a
zero-check on :

- contract_owner = _owner (NFTMeme.sol#1162)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
Reentrancy in NFTMeme.ClaimMyRewards() (NFTMeme.sol#1693-1740):

External calls:

- token_to_pay.transferFrom(contract_owner,msg.sender,total_pending_rewards[msg.sender])
(NFTMeme.sol#1698)

State variables written after the call(s):

- delete owner_pending_posts[msg.sender] (NFTMeme.sol#1735)

- delete owner_pending_posts_comments[msg.sender] (NFTMeme.sol#1728)

- delete owner_pending_posts_likesmsg.sender] (NFTMeme.sol#1721)

- delete user_pending_posts_comment[msg.sender] (NFTMeme.sol#1714)

- delete user_pending_posts_likes[msg.sender] (NFTMeme.sol#1707)
Reentrancy in ERC721NFTMarket.buy(uint256) (NFTMeme.sol#1094-1129):

External calls:

- callOptionalReturn(this,abi.encodeWithSelector(this.transferFrom.selector,owner,msg.sender,tokenid))
(NFTMeme.sol#1105)

- (success,returndata) = address(token).call(data) (NFTMeme.sol#1149)

- success = token_to_pay.transferFrom(msg.sender,_wallets[tokenld],amount4owner)
(NFTMeme.sol#1112)

- success?2 = token_to_pay.transferFrom(msg.sender,admin,amount4admin) (NFTMeme.sol#1116)

State variables written after the call(s):

- soldFor[tokenld] = sellBidPrice[tokenld] (NFTMeme.sol#1119)
Reentrancy in StakeContract.createStake(uint256) (NFTMeme.sol#1308-1326):

External calls:

- token_to_pay.transferFrom(msg.sender,address(this),amount) (NFTMeme.sol#1316)

State variables written after the call(s):

- ownersAccounts.push(msg.sender) (NFTMeme.sol#1320)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Reentrancy in StakeContract.withdrawStake(uint256) (NFTMeme.sol#1330-1374):
External calls:
- token_to_pay.transfer(msg.sender,amountToWithdraw) (NFTMeme.sol#1346)
State variables written after the call(s):
- collectedPenalty = collectedPenalty.add(the_penalty) (NFTMeme.sol#1349)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in NFTMeme.ClaimMyRewards() (NFTMeme.sol#1693-1740):
External calls:
- token_to_pay.transferFrom(contract_owner,msg.sender,total_pending_rewards[msg.sender])
(NFTMeme.sol#1698)
Event emitted after the call(s):
- Claim(msg.sender,true,false,false,user_pending_posts_likes[msg.sender]) (NFTMeme.sol#1705)
- Claim(msg.sender,false,true,false,user_pending_posts comment[msg.sender]) (NFTMeme.sol#1712)
- Claim(msg.sender,true,false,false,owner_pending_posts_likesmsg.sender]) (NFTMeme.sol#1719)
- Claim(msg.sender,false,true,false,owner_pending_posts_comments[msg.sender])
(NFTMeme.sol#1726)
- Claim(msg.sender,false,false,true,owner_pending_posts[msg.sender]) (NFTMeme.sol#1733)
Reentrancy in ERC721NFTMarket.buy(uint256) (NFTMeme.sol#1094-1129):
External calls:
- callOptionalReturn(this,abi.encodeWithSelector(this.transferFrom.selector,owner,msg.sender,tokenid))
(NFTMeme.sol#1105)
- (success,returndata) = address(token).call(data) (NFTMeme.sol#1149)
- success = token_to_pay.transferFrom(msg.sender, wallets[tokenld],amount4owner)
(NFTMeme.sol#1112)
- success?2 = token_to_pay.transferFrom(msg.sender,admin,amount4admin) (NFTMeme.sol#1116)
Event emitted after the call(s):
- Commission(tokenld,owner,sellBidPrice[tokenld],commissionRate,amount4admin)
(NFTMeme.sol#1127)
- Sale(tokenld,owner,msg.sender,sellBidPrice[tokenld]) (NFTMeme.sol#1126)
Reentrancy in NFTMeme.buyMeme(uint256) (NFTMeme.sol#1742-1749):
External calls:
- buy(memesJpost_id].nft_id) (NFTMeme.sol#1746)
- (success,returndata) = address(token).call(data) (NFTMeme.sol#1149)
- success = token_to_pay.transferFrom(msg.sender,_wallets[tokenld],amount4owner)
(NFTMeme.sol#1112)
- success?2 = token_to_pay.transferFrom(msg.sender,admin,amount4admin) (NFTMeme.sol#1116)
Event emitted after the call(s):
- BuyMeme(post_id,memes[post_id].owner,msg.sender,sellBidPrice[memes[post_id].nft_id])
(NFTMeme.sol#1747)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
StakeContract.withdrawStake(uint256) (NFTMeme.sol#1330-1374) uses timestamp for comparisons
Dangerous comparisons:
- block.timestamp.sub(stakesOfOwner[msg.sender][arraylndex].startDate) < minimumStakeTime
(NFTMeme.sol#1337)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Address.isContract(address) (NFTMeme.sol#344-360) uses assembly
- INLINE ASM (NFTMeme.sol#356-358)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
StakeContract.withdrawStake(uint256) (NFTMeme.sol#1330-1374) compares to a boolean constant:
-require(bool,string)(stakesOfOwner[msg.sender][arraylndex].closed == false, This stake is closed)
(NFTMeme.sol#1334)
NFTMeme.like(uint256) (NFTMeme.sol#1548-1622) compares to a boolean constant:
-require(bool,string)(user_liked_post[msg.sender][_id] == false,You already liked this meme)
(NFTMeme.sol#1554)
NFTMeme.comment(uint256) (NFTMeme.sol#1625-1691) compares to a boolean constant:
-require(bool,string)(user_commented_post[msg.sender][_id] == false,You already commented this
meme) (NFTMeme.sol#1631)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equality
INFO:Detectors:
Address.toPayable(address) (NFTMeme.sol#366-372) is never used and should be removed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ERC721Enumerable._addTokenToAllTokensEnumeration(uint256) (NFTMeme.sol#895-898) is never used
and should be removed
ERC721Enumerable._addTokenToOwnerEnumeration(address,uint256) (NFTMeme.sol#886-889) is never
used and should be removed
ERC721Enumerable._removeTokenFromOwnerEnumeration(address,uint256) (NFTMeme.sol#908-929) is
never used and should be removed
Roles.add(Roles.Role,address) (NFTMeme.sol#768-771) is never used and should be removed
Roles.has(Roles.Role,address) (NFTMeme.sol#777-784) is never used and should be removed
SafeMath.mod(uint256,uint256) (NFTMeme.sol#323-326) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Low level call in ERC721NFTMarket.callOptionalReturn(IERC721,bytes) (NFTMeme.sol#1137-1156):

- (success,returndata) = address(token).call(data) (NFTMeme.sol#1149)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Parameter ERC20.transfer(address,uint256). to (NFTMeme.sol#71) is not in mixedCase
Parameter ERC20.transfer(address,uint256)._value (NFTMeme.sol#71) is not in mixedCase
Parameter ERC20.transferFrom(address,address,uint256)._from (NFTMeme.sol#79) is not in mixedCase
Parameter ERC20.transferFrom(address,address,uint256)._to (NFTMeme.sol#79) is not in mixedCase
Parameter ERC20.transferFrom(address,address,uint256)._value (NFTMeme.sol#79) is not in mixedCase
Parameter ERC20.balanceOf(address)._owner (NFTMeme.sol#91) is not in mixedCase
Parameter ERC721.safeTransferFrom(address,address,uint256,bytes)._data (NFTMeme.sol#630) is not in
mixedCase
Parameter ERC721NFTMarket.setToken(ERC20)._token (NFTMeme.sol#1055) is not in mixedCase
Parameter ERC721NFTMarket.updateAdmin(address,address,uint256)._owner (NFTMeme.sol#1159) is not
in mixedCase
Parameter ERC721NFTMarket.updateAdmin(address,address,uint256)._admin (NFTMeme.sol#1159) is not
in mixedCase
Parameter ERC721NFTMarket.updateAdmin(address,address,uint256)._commissionRate
(NFTMeme.sol#1159) is not in mixedCase
Variable ERC721NFTMarket.token_to_pay (NFTMeme.sol#1024) is not in mixedCase
Variable ERC721NFTMarket.contract_owner (NFTMeme.sol#1029) is not in mixedCase
Parameter StakeContract.modifyLimit(uint256)._newVal (NFTMeme.sol#1240) is not in mixedCase
Parameter StakeContract.modifyMinimum(uint256)._newVal (NFTMeme.sol#1244) is not in mixedCase
Parameter StakeContract.modifyAnnualinterestRatePercentage(uint8). _newVal (NFTMeme.sol#1250) is not
in mixedCase
Parameter StakeContract.modifyMinimumStakeTime(uint256). newVal (NFTMeme.sol#1253) is not in
mixedCase
Parameter StakeContract.modifyPenalty(uint8). _newVal (NFTMeme.sol#1256) is not in mixedCase
Parameter StakeContract.calculatelnterest(address,uint256)._ownerAccount (NFTMeme.sol#1265) is not in
mixedCase
Parameter StakeContract.checkAvailableLimit(address)._account (NFTMeme.sol#1282) is not in mixedCase
Parameter StakeContract.hasActiveStakes(address)._account (NFTMeme.sol#1298) is not in mixedCase
Variable StakeContract.APY (NFTMeme.sol#1184) is not in mixedCase
Function NFTMeme.user_pending_posts_likes_length(address) (NFTMeme.sol#1457-1459) is not in
mixedCase
Function NFTMeme.user_pending_posts _comment_length(address) (NFTMeme.sol#1461-1463) is not in
mixedCase
Function NFTMeme.owner_pending_posts_likes_length(address) (NFTMeme.sol#1465-1467) is not in
mixedCase
Function NFTMeme.owner_pending_posts_comments_length(address) (NFTMeme.sol#1469-1471) is not in
mixedCase
Function NFTMeme.owner_pending_posts_length(address) (NFTMeme.sol#1473-1475) is not in mixedCase
Parameter NFTMeme.setRewards(uint256,uint256,uint256,uint256,uint256,uint256)._rewards_like_owner
(NFTMeme.sol#1479) is not in mixedCase
Parameter NFTMeme.setRewards(uint256,uint256,uint256,uint256,uint256,uint256)._rewards_like_user
(NFTMeme.sol#1480) is not in mixedCase
Parameter NFTMeme.setRewards(uint256,uint256,uint256,uint256,uint256,uint256)._limit_likes
(NFTMeme.sol#1481) is not in mixedCase
Parameter
NFTMeme.setRewards(uint256,uint256,uint256,uint256,uint256,uint256)._rewards_comments_owner
(NFTMeme.sol#1482) is not in mixedCase
Parameter
NFTMeme.setRewards(uint256,uint256,uint256,uint256,uint256,uint256)._rewards_comments_user
(NFTMeme.sol#1483) is not in mixedCase

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Parameter NFTMeme.setRewards(uint256,uint256,uint256,uint256,uint256,uint256)._rewards_posting
(NFTMeme.sol#1484) is not in mixedCase
Parameter NFTMeme.createMeme(uint256,bool,uint256)._id (NFTMeme.sol#1498) is not in mixedCase
Parameter NFTMeme.createMeme(uint256,bool,uint256)._is_nft (NFTMeme.sol#1498) is not in mixedCase
Parameter NFTMeme.createMeme(uint256,bool,uint256)._sale price (NFTMeme.sol#1498) is not in
mixedCase
Parameter NFTMeme.changelsNFT(uint256,bool)._id (NFTMeme.sol#1519) is not in mixedCase
Parameter NFTMeme.changelsNFT(uint256,bool)._is_nft (NFTMeme.sol#1519) is not in mixedCase
Parameter NFTMeme.changeEnabled(uint256,bool)._id (NFTMeme.sol#1529) is not in mixedCase
Parameter NFTMeme.changeEnabled(uint256,bool)._enabled (NFTMeme.sol#1529) is not in mixedCase
Parameter NFTMeme.changeMinimumtokensForPost(uint256)._newVal (NFTMeme.sol#1534) is not in
mixedCase
Parameter NFTMeme.changeMinimumtokensForLike(uint256). _newVal (NFTMeme.sol#1537) is not in
mixedCase
Parameter NFTMeme.changeMinimumtokensForComment(uint256)._newVal (NFTMeme.sol#1540) is not in
mixedCase
Parameter NFTMeme.changeMinimumLikesToBuyMeme(uint256)._newVal (NFTMeme.sol#1543) is not in
mixedCase
Parameter NFTMeme.like(uint256)._id (NFTMeme.sol#1548) is not in mixedCase
Parameter NFTMeme.comment(uint256)._id (NFTMeme.sol#1625) is not in mixedCase
Function NFTMeme.ClaimMyRewards() (NFTMeme.sol#1693-1740) is not in mixedCase
Parameter NFTMeme.buyMeme(uint256).post_id (NFTMeme.sol#1742) is not in mixedCase
Variable NFTMeme.user_unassigned_posts_likes (NFTMeme.sol#1422) is not in mixedCase
Variable NFTMeme.user_unassigned_posts_comment (NFTMeme.sol#1423) is not in mixedCase
Variable NFTMeme.user_pending_posts_likes (NFTMeme.sol#1426) is not in mixedCase
Variable NFTMeme.user_pending_posts_comment (NFTMeme.sol#1427) is not in mixedCase
Variable NFTMeme.owner_pending_posts_likes (NFTMeme.sol#1430) is not in mixedCase
Variable NFTMeme.owner_pending_posts_comments (NFTMeme.sol#1431) is not in mixedCase
Variable NFTMeme.owner_pending_posts (NFTMeme.sol#1432) is not in mixedCase
Variable NFTMeme.total_pending_rewards (NFTMeme.sol#1435) is not in mixedCase
Variable NFTMeme.user_liked_post (NFTMeme.sol#1438) is not in mixedCase
Variable NFTMeme.user_commented_post (NFTMeme.sol#1439) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
ERC721._operatorApprovals (NFTMeme.sol#485) is never used in NFTMeme (NFTMeme.sol#1390-1751)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-state-variables
INFO:Detectors:
balanceOf(address) should be declared external:

- ERC20.balanceOf(address) (NFTMeme.sol#91-93)

- IRC20.balanceOf(address) (NFTMeme.sol#27)
transfer(address,uint256) should be declared external:

- ERC20.transfer(address,uint256) (NFTMeme.sol#71-77)

- IRC20.transfer(address,uint256) (NFTMeme.sol#33)
transferFrom(address,address,uint256) should be declared external:

- ERC20.transferFrom(address,address,uint256) (NFTMeme.sol#79-89)

- IRC20.transferFrom(address,address,uint256) (NFTMeme.sol#40)
safeTransferFrom(address,address,uint256) should be declared external:

- ERC721.safeTransferFrom(address,address,uint256) (NFTMeme.sol#606-612)

- [IERC721.safeTransferFrom(address,address,uint256) (NFTMeme.sol#160-164)
onERC721Received(address,address,uint256,bytes) should be declared external:

- IERC721Receiver.onERC721Received(address,address,uint256,bytes) (NFTMeme.sol#215-220)
tokenOfOwnerBylndex(address,uint256) should be declared external:

- ERC721Enumerable.tokenOfOwnerBylndex(address,uint256) (NFTMeme.sol#838-841)

- IERC721Enumerable.tokenOfOwnerBylndex(address,uint256) (NFTMeme.sol#793)
tokenBylndex(uint256) should be declared external:

- ERC721Enumerable.tokenBylndex(uint256) (NFTMeme.sol#857-860)

- IERC721Enumerable.tokenBylndex(uint256) (NFTMeme.sol#795)
exists(uint256) should be declared external:

- ERC721Full.exists(uint256) (NFTMeme.sol#942-944)
tokensOfOwner(address) should be declared external:

- ERC721Full.tokensOfOwner(address) (NFTMeme.sol#946-948)
transfer(address,uint256) should be declared external:

- ERC721Full.transfer(address,uint256) (NFTMeme.sol#969-974)
setToken(ERC20) should be declared external:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

- ERC721NFTMarket.setToken(ERC20) (NFTMeme.sol#1055-1057)
canSell(uint256) should be declared external:

- ERC721NFTMarket.canSell(uint256) (NFTMeme.sol#1059-1061)
canBuy(uint256) should be declared external:

- ERC721NFTMarket.canBuy(uint256) (NFTMeme.sol#1085-1091)
updateAdmin(address,address,uint256) should be declared external:

- ERC721NFTMarket.updateAdmin(address,address,uint256) (NFTMeme.sol#1159-1164)
stakesOfOwnerLength(address) should be declared external:

- StakeContract.stakesOfOwnerLength(address) (NFTMeme.sol#1236-1238)
user_pending_posts_likes_length(address) should be declared external:

- NFTMeme.user_pending_posts_likes_length(address) (NFTMeme.sol#1457-1459)
user_pending_posts_comment_length(address) should be declared external:

- NFTMeme.user_pending_posts_comment_length(address) (NFTMeme.sol#1461-1463)
owner_pending_posts_likes_length(address) should be declared external:

- NFTMeme.owner_pending_posts_likes_length(address) (NFTMeme.sol#1465-1467)
owner_pending_posts_comments_length(address) should be declared external:

- NFTMeme.owner_pending_posts_comments_length(address) (NFTMeme.sol#1469-1471)
owner_pending_posts_length(address) should be declared external:

- NFTMeme.owner_pending_posts_length(address) (NFTMeme.sol#1473-1475)
setRewards(uint256,uint256,uint256,uint256,uint256,uint256) should be declared external:

- NFTMeme.setRewards(uint256,uint256,uint256,uint256,uint256,uint256) (NFTMeme.sol#1478-1495)
createMeme(uint256,bool,uint256) should be declared external:

- NFTMeme.createMeme(uint256,bool,uint256) (NFTMeme.sol#1498-1516)
changelsNFT(uint256,bool) should be declared external:

- NFTMeme.changelsNFT(uint256,bool) (NFTMeme.sol#1519-1526)
changeEnabled(uint256,bool) should be declared external:

- NFTMeme.changeEnabled(uint256,bool) (NFTMeme.sol#1529-1532)
changeMinimumtokensForPost(uint256) should be declared external:

- NFTMeme.changeMinimumtokensForPost(uint256) (NFTMeme.sol#1534-1536)
changeMinimumtokensForLike(uint256) should be declared external:

- NFTMeme.changeMinimumtokensForLike(uint256) (NFTMeme.sol#1537-1539)
changeMinimumtokensForComment(uint256) should be declared external:

- NFTMeme.changeMinimumtokensForComment(uint256) (NFTMeme.sol#1540-1542)
changeMinimumLikesToBuyMeme(uint256) should be declared external:

- NFTMeme.changeMinimumLikesToBuyMeme(uint256) (NFTMeme.sol#1543-1545)
like(uint256) should be declared external:

- NFTMeme.like(uint256) (NFTMeme.sol#1548-1622)
comment(uint256) should be declared external:

- NFTMeme.comment(uint256) (NFTMeme.sol#1625-1691)
ClaimMyRewards() should be declared external:

- NFTMeme.ClaimMyRewards() (NFTMeme.sol#1693-1740)
buyMeme(uint256) should be declared external:

- NFTMeme.buyMeme(uint256) (NFTMeme.sol#1742-1749)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-external
INFO:Slither:NFTMeme.sol analyzed (18 contracts with 75 detectors), 130 result(s) found
INFO:Slither:Use https://crytic.io/ to get access to additional detectors and Github integration

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

