

SMART CONTRACT AUDIT REPORT

For

CarNomic Token (Order #02JUL2019)

Prepared By: Yogesh Padsala Prepared For: Carnomic Ltd.

Prepared on: 02/07/2019 https://www.carnomic.io

audit@etherauthority.io

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Gas Optimization Discussion

9. Discussions and improvements

10. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has following file:

● https://etherscan.io/address/0x2e0c40beb655a988e087ad71ca191a280

6ac55ef#contracts

It contains 114 lines of Solidity code. All the functions and state variables are

not well commented, but that does not raise any vulnerability, but it would

have raised readability.

The audit was performed by two senior solidity auditors from EtherAuthority.

The team has extensive work experience of developing and auditing the smart

contracts.

This smart contract reflects correct data according to white paper found at:

https://www.carnomic.io/wp/Carnomic-White-Paper-en.pdf

This audit procedure also included the use of automated software to further

scan of the code to identify potential issues:

For example:

https://tool.smartdec.net/scan/24be0ae838eb4517873039793d9b3cbe

We checked those reports carefully and confirm that some of the warnings,

either are just for information purpose or not very critical for our use case!

EtherAuthority Limited (www.EtherAuthority.io)

https://www.carnomic.io/wp/Carnomic-White-Paper-en.pdf
https://tool.smartdec.net/scan/24be0ae838eb4517873039793d9b3cbe

Quick Stats:

Overall Audit Result: PASSED

EtherAuthority Limited (www.EtherAuthority.io)

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version is old Not Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Moderated

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code
Specification

Visibility not explicitly declared Not Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Not Passed

Other code specification issues Passed

Gas
Optimization

Assert() misuse Moderated

High consumption ‘for/while’ loop N/A

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set N/A

“Short Address” Attack Passed

“Double Spend” Attack Passed

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks on

the code. Some of those are as below:

3.1: Over and under flows

SafeMath library is not used in the contract, but proper variable validations

prevented the possibility of overflow and underflow attacks.

3.2: Short address attack

Although this contract is not vulnerable to this attack, it is highly

recommended to call functions after checking validity of the address from the

outside client.

3.3: Visibility & Delegatecall

Delegatecall is not used in the contract thus it does not have this vulnerability.

And visibility is also used properly.

3.4: Reentrancy / TheDAO hack

Use of “require” function and Checks-Effects-Interactions pattern in this smart

contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DoS)

There is No any process consuming loops in the contracts which can be used

for DoS attacks. and thus this contract is not prone to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Checks-Effects-Interactions pattern
While transferring tokens, this contract does all the process first and then

transfers them. The same while doing other process too. This is very good

practice which prevents malicious possibility. For example: transfer() function.

4.2 Functions input parameters passed
The functions in this contract verifies the validity of the input parameters, and

this validations cannot be by-passed in anyway.

4.3 No unnecessary validations

Although use of SafeMath library also would be good programming flow.

EtherAuthority Limited (www.EtherAuthority.io)

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

=> No Critical vulnerabilities found - Good job team!

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

=> No Medium vulnerabilities found - Good job again!

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Compiler version should be fixed

The contract has lower solidity version than the current one. This version gap is

quite high and there were many improvements afterwards.

So, it is good practice to deploy the contract having latest solidity version. The

solidity version at a time of audit is: 0.5.10

7.2: Deprecated elements

The way constructor function was defined is deprecated. You need to use

“constructor” keyword to define constructor function.

The functions declared as “constant” are also deprecated. They need to be

declared as view or pure.

Invoking events without "emit" prefix is too deprecated.

EtherAuthority Limited (www.EtherAuthority.io)

7.3: No explicit visibility

Visibility is not specified at line #53, #64, #76, #80, #86, #90, #91, #109. Please

note that this is not a big issue as it takes default to “public”. But it's suggested

to explicitly define visibility to avoid confusion.

7.4: No Transfer event in constructor

The constructor function assigns initial supply of tokens to owner. But it does

not log for this transaction. It's good to add a Transfer event so it properly log

this particular transaction.

7.5: Use require instead of assert in SafeMath library

If assert check fails, then it will consume all the remaining gas in transaction

call. This would give users a surprised high charge in such failed transactions.

So, it’s better to use require, which only takes gas cost which was used to

execute function call up to that point.

EtherAuthority Limited (www.EtherAuthority.io)

8. Gas Optimization Discussion

=> The Contract is most optimum for the gas cost. There is no gas expensive

loops, or logical unnecessary processes.

9. Discussions and improvements

9.1 No direct burn function

Whitepaper (page #16) mentioned about token burn. But this contract does

not have direct burn function. So, to burn any tokens, users have to send that

to zero address (0x0).

9.2 approve() of ERC20 Standard

To prevent attack vectors regarding approve() like the one described here:

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh

4DYKjA_jp-RLM/edit , clients SHOULD make sure to create user interfaces in

such a way that they set the allowance first to 0 before setting it to another

value for the same spender. THOUGH the contract itself shouldn't enforce it, to

allow backwards compatibility with contracts deployed before

9.3 While using SafeMath library

SafeMath library code is included. But it is not used in contract anywhere.

Although we checked that the arithmetic conditions do not cause any

underflow or overflow, but if the safemath is not being used then better to

remove, or use it in appropriate arithmetic calculations!

9.4 Consider adding ownership contracts

Ideally, the owner of the contract should be defined at the time of contract

deployment. And who can do all the administrative functions (if any).

This is useful to manage ownership of the contract down the road.

EtherAuthority Limited (www.EtherAuthority.io)

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

10. Summary of the Audit

Overall, the code is simple and straightforward ERC20 implementation. apart

from few improvements suggested above, rest is pretty good.

Compiler showed couple of warnings, as below:

Now, we checked that the warnings in purple division, are due to their static

analysis, which includes like gas estimations and all. So, it is important to

supply correct gas values while calling various functions.

Those warnings can be safely ignored as should be taken care while calling the

smart contract functions.

On another hand, then warnings in purple division should be resolved.

Please try to check the address and value of token externally before sending to

the solidity code.

It is also encouraged to run bug bounty program and let community help to

further polish the code to the perfection.

EtherAuthority Limited (www.EtherAuthority.io)

