
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer : Ruugle Team (https://ruugle.io)
Prepared on : 20/05/2021
Platform: Binance Smart Chain
Language: Solidity
Audit Type: Standard

audit@etherauthority.io



Table of contents

Project File 4

Introduction 4

Quick Stats 5

Executive Summary 6

Code Quality 7

Documentation 7

Use of Dependencies 8

AS-IS overview 9

Severity Definitions 10

Audit Findings 10

Conclusion 13

Our Methodology 14

Disclaimers 16

Appendix

● Code Flow Diagram 17

● Slither Report Log 18



THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.



Project file

Name Code Review and Security Analysis
Report for Ruugle Token Smart Contract

Platform BSC / Solidity

File Ruugle.sol

File MD5 hash BBF69F62175EDCF7842B2AAA665E30A4

Online Contract
Code

https://bscscan.com/address/0x96e29312b4d81
A9bEB23D7484799a1667EbF8750

Introduction
We were contracted by the Ruugle team to perform the Security audit of the
Ruugle Token smart contract code. The audit has been performed using
manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on 20/05/2021.

The Audit type was Standard Audit. Which means this audit is concluded
based on Standard audit scope, which is one security engineer performing
audit procedure for 2 days. This document outlines all the findings as well as
an AS-IS overview of the smart contract codes.

https://bscscan.com/address/0x96e29312b4d81A9bEB23D7484799a1667EbF8750
https://bscscan.com/address/0x96e29312b4d81A9bEB23D7484799a1667EbF8750


Quick Stats:

Main
Category

Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks
management

Passed

Critical operation lacks event log Moderated
Human/contract checks bypass Passed
Random number generation/use

vulnerability
Passed

Fallback function misuse Passed
Race condition Passed

Logical vulnerability Passed
Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed
Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Other code specification issues Passed
Gas

Optimization
Assert() misuse Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED



Executive Summary
According to the standard audit assessment, Customer`s solidity smart
contract is Well secured.

You are here

We used various tools like Mythril, Slither and Remix IDE. At the same time
this finding is based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section. General
overview is presented in AS-IS section and all identified issues can be found
in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 1 low and some very low level
issues.



Code Quality
Ruugle Token smart contract has 1 smart contract. This smart contract also

contains Libraries, Smart contract inherits and Interfaces. These are

compact and well written contracts.

The libraries in the Ruugle Token protocol are part of its logical algorithm. A

library is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned a specific address and

its properties / methods can be reused many times by other contracts in the

Ruugle Token protocol.

The Ruugle team has not provided scenario and unit test scripts, which

would have helped to determine the integrity of the code in an automated

way.

Overall, code parts are not well commented on smart contracts.

Documentation

We were given Ruugle token smart contracts code in the form of a BscScan

web link. The hash of that code and that web link are mentioned above in the

table.

As mentioned above, most code parts are not well commented. so it is

difficult to quickly understand the programming flow as well as complex code

logic. Comments are very helpful in understanding the overall architecture of

the protocol.



Another source of information was its official website which provided rich

information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract

infrastructure that are based on well known industry standard open source

projects. And their core code blocks are written well.

Apart from libraries, its functions are not used in external smart contract

calls.



AS-IS overview

Ruugle is a BEP20 token smart contract, having features like minting, etc. Its
core components are described below:

Ruugle.sol

(1) Inherited contracts
(a) Ownable: Ownership contract.

(b) ERC20: ERC20 contract.

(2) Events
(a) event Mint(uint256 _value);

(b) event Transfer(address indexed _from, address indexed _to, uint256

_value);

(c) event Approval(address indexed _owner, address indexed _spender,

uint256 _value);

(3) Functions

Sl. Functions Type Observation Conclusion
1 mint write access by

only owner
No Issue

2 balanceOf read Passed No Issue
3 transfer write Passed No Issue
4 transferFrom write Passed No Issue
5 approve write Passed No Issue
6 allowance read Passed No Issue
7 changeOwner write access by

only owner
No Issue

8 acceptOwnership write Passed No Issue



Severity Definitions
Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.
High-level vulnerabilities are difficult to exploit;

High however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract
Practice execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.



Low

(1) Missing Events emitting

In a decentralized world, ownership change in the contract is considered an

important state change. And thus, it should emit an event. The same thing in

the mint function. It is generating new tokens. But there is no Transfer event.

Ideally, there should be a Transfer event which logs tokens generated from

address(0) to recipient. The same thing in the constructor, there should be a

Transfer event.

Resolution: This issue is acknowledged.

Very Low / Best Practices

(1) Specify explicit visibility

Although, this does not raise any security vulnerabilities. But it is best practice
to specify visibility to avoid confusion.

(2) declare variables as constant

It is a good practice to specify variables as constant, which would not be
modified. It saves some gas as well.



(3) Approve of BEP20 standard: This can be used to front run. From the

client side, only use this function to change the allowed amount to 0 or from 0

(wait till transaction is mined and approved). This should be done from the

client side.

(4) All functions which are not called internally, must be declared as external.

It is more efficient as sometimes it saves some gas.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best

-practices

Centralization
This smart contract has some functions which can be executed by Admin

(Owner) only. If the admin wallet private key would be compromised, then it

would create trouble. Following are Admin functions:

● changeOwner: Owner has permission to change the owner address

● mint: Owner can mint new tokens upto the max limit of 200 million. This

maximum minting limit is a good thing.

For better decentralized user experience, it's better to renounce the

ownership if not needed.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices
https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices


Conclusion

We were given a contract code. And we have used all possible tests based

on given objects as files. We observed some issues in the smart contract and

those are fixed/acknowledged in the smart contract. So it is good to go for

the production.

Since possible test cases can be unlimited for such smart contract protocol,

we provide no such guarantee of future outcomes. We have used all the

latest static tools and manual observations to cover maximum possible test

cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with

static analysis tools. Smart Contract’s high level description of functionality

was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security state of the reviewed contract, based on standard audit procedure

scope, is “Well Secured”.



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web site

to get a high level understanding of what functionality the software under

review provides. We then meet with the developers to gain an appreciation of

their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm

threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code

dependencies, skim open issue tickets, and generally investigate details other

than the implementation.



Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and impact

of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyze the feasibility of an

attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinized by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.



Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the
best industry practices at the date of this report, in relation to: cybersecurity
vulnerabilities and issues in smart contract source code, the details of which
are disclosed in this report, (Source Code); the Source Code compilation,
deployment and functionality (performing the intended functions).

Due to the fact that the total number of test cases are unlimited, the audit
makes no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the
code, bugfree status or any other statements of the contract. While we have
done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only. We also suggest
conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have their own vulnerabilities that can lead to hacks. Thus, the
audit can’t guarantee explicit security of the audited smart contracts.



Appendix

Code Flow Diagram - Ruugle Token



Slither Results Log

Slither Report Ruugle.sol
root@mnb-ThinkPad-T410:/home/mnb/slitherContracts#
root@mnb-ThinkPad-T410:/home/mnb/slitherContracts# slither Ruugle.sol
INFO:Detectors:
Contract locking ether found:
Contract Ruugle (Ruugle.sol#66-91) has payable functions:
- Ruugle.receive() (Ruugle.sol#80-82)
But does not have a function to withdraw the ether
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether
INFO:Detectors:
Owned.changeOwner(address)._newOwner (Ruugle.sol#16) lacks a zero-check on :
- newOwner = _newOwner (Ruugle.sol#17)
Ruugle.constructor(address)._owner (Ruugle.sol#70) lacks a zero-check on :
- owner = _owner (Ruugle.sol#76)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-addressvalidation
INFO:Detectors:
Pragma version0.8.0 (Ruugle.sol#5) necessitates a version too recent to be trusted. Consider
deploying with 0.6.12/0.7.6
solc-0.8.0 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-ofsolidity
INFO:Detectors:
Parameter Owned.changeOwner(address)._newOwner (Ruugle.sol#16) is not in mixedCase
Parameter ERC20.balanceOf(address)._owner (Ruugle.sol#36) is not in mixedCase
Parameter ERC20.transfer(address,uint256)._to (Ruugle.sol#38) is not in mixedCase
Parameter ERC20.transfer(address,uint256)._amount (Ruugle.sol#38) is not in mixedCase
Parameter ERC20.transferFrom(address,address,uint256)._from (Ruugle.sol#46) is not in
mixedCase
Parameter ERC20.transferFrom(address,address,uint256)._to (Ruugle.sol#46) is not in mixedCase
Parameter ERC20.transferFrom(address,address,uint256)._amount (Ruugle.sol#46) is not in
mixedCase
Parameter ERC20.approve(address,uint256)._spender (Ruugle.sol#55) is not in mixedCase
Parameter ERC20.approve(address,uint256)._amount (Ruugle.sol#55) is not in mixedCase
Parameter ERC20.allowance(address,address)._owner (Ruugle.sol#61) is not in mixedCase
Parameter ERC20.allowance(address,address)._spender (Ruugle.sol#61) is not in mixedCase
Parameter Ruugle.mint(uint256)._amount (Ruugle.sol#84) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-soliditynaming-
conventions
INFO:Detectors:
Ruugle.constructor(address) (Ruugle.sol#70-78) uses literals with too many digits:
- totalSupply = 179000000e18 (Ruugle.sol#74)
Ruugle.constructor(address) (Ruugle.sol#70-78) uses literals with too many digits:
- maxSupply = 200000000e18 (Ruugle.sol#75)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
changeOwner(address) should be declared external:
- Owned.changeOwner(address) (Ruugle.sol#16-18)
acceptOwnership() should be declared external:
- Owned.acceptOwnership() (Ruugle.sol#19-23)
balanceOf(address) should be declared external:
- ERC20.balanceOf(address) (Ruugle.sol#36)
transfer(address,uint256) should be declared external:
- ERC20.transfer(address,uint256) (Ruugle.sol#38-44)
transferFrom(address,address,uint256) should be declared external:
- ERC20.transferFrom(address,address,uint256) (Ruugle.sol#46-53)
approve(address,uint256) should be declared external:
- ERC20.approve(address,uint256) (Ruugle.sol#55-59)
allowance(address,address) should be declared external:
- ERC20.allowance(address,address) (Ruugle.sol#61-63)
mint(uint256) should be declared external:
- Ruugle.mint(uint256) (Ruugle.sol#84-90)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-thatcould-
be-declared-external
INFO:Slither:Ruugle.sol analyzed (3 contracts with 75 detectors), 27 result(s) found
INFO:Slither:Use https://crytic.io/ to get access to additional detectors and Github integration
root@mnb-ThinkPad-T410:/home/mnb/slitherContracts#




