

SMART CONTRACT AUDIT REPORT

For

Abele Token (Order #18AUG2019)

Prepared By: Chandan Kumar Prepared For: Abele Group

Prepared on: 18/08/2019

audit@etherauthority.io

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Very low severity vulnerabilities found in the contract

9. Gas Optimization Discussion

10. Discussions and improvements

11. Summary of the audit

EtherAuthority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has two main smart contract files:

● AbeleToken.sol

● AbeleTokenSale.sol

It contains approx 572 lines of Solidity code. All the functions and state

variables are well commented, logical approach of coding is very neat and

clean, and taken care of required security measures, but it contains cross

version code approach, which was bound to fail with any compiler version, so it

was not in state to attempt advance test for audit, so auditor made some

minimal essential changes to apply audit test of next level , those reasons and

changes are as below.

Reasons:

● Code was split into multiple files with structured folders.

● Solidity version is too old.

● Inconsistent version across files.

● Code block mismatch and conflict with version specified

● Inheritance conflict

EtherAuthority Limited (www.EtherAuthority.io)

Changes:

● All files merged into one for better readability and compact compiled

output.

● Specified version kept to 0.4.19 (which was max across all files)

● All codes blocks mismatching with above version, changed to match with

version

● Inheritance conflict removed

● Input parameter applied on constructor, for version discipline, converted

to onlyOwner type public function, (because it was not called from any

other part of contract.)

The audit was performed by two senior solidity auditors at EtherAuthority. The

team has extensive work experience in developing and auditing the smart

contracts.

This audit also checked the business data provided in the document by Abele

Group.

This audit procedure also included the use of automated software to further

scan of the code to identify potential issues:

For example:

https://tool.smartdec.net/scan/e704269ef51e4a3d92f7d9b04d4a9edc

https://mythx.io tool provided as remix.ethereum.org plugin

EtherAuthority Limited (www.EtherAuthority.io)

https://tool.smartdec.net/scan/e704269ef51e4a3d92f7d9b04d4a9edc
https://mythx.io/

Quick Stats:

EtherAuthority Limited (www.EtherAuthority.io)

Main Category Subcategory Result

Contract

Programming

Solidity version not specified Passed

Solidity version is old Not Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Moderated

Function access control lacks management Passed

Critical operation lacks event log Moderated

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Not Passed

Code

Specification

Visibility not explicitly declared Not Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Not Passed

Other code specification issues Passed

Gas

Optimization

Assert() misuse Not Passed

Overall Audit Result: NOT PASSED

EtherAuthority Limited (www.EtherAuthority.io)

High consumption ‘for/while’ loop N/A

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set N/A

“Short Address” Attack Passed

“Double Spend” Attack Passed

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks on

the code. Some of those are as below:

3.1: Over and under flows

SafeMath library is used in the contract, which prevented the possibility of

overflow and underflow attacks.

3.2: Short address attack

Although this contract is not vulnerable to this attack, it is highly

recommended to call functions after checking the validity of the address from

the outside client.

3.3: Visibility & Delegatecall

Delegatecall is not used in the contract thus it does not have this vulnerability.

And visibility is also used properly.

3.4: Reentrancy / TheDAO hack

Use of “require” function and Checks-Effects-Interactions pattern in this smart

contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DoS)

There is No any process consuming loops in the contracts which can be used

for DoS attacks. and thus this contract is not prone to DoS.

EtherAuthority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Checks-Effects-Interactions pattern
While transferring tokens, this contract does all the process first and then

transfers them. The same while doing other process too. This is very good

practice which prevents malicious possibility. For example: transfer() function.

4.2 Functions input parameters passed
The functions in this contract verifies the validity of the input parameters, and

this validations cannot be by-passed in anyway.

4.3 Conditions validations

The validation of input parameters are not done to prevent overflow and

underflow of integers. Although use of SafeMath library also would be good

programming flow.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contr

acts/math/SafeMath.sol

4.3 Variables defined as constant

This is a good thing as it consumes less space in the memory.

EtherAuthority Limited (www.EtherAuthority.io)

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

5.1 No automated token issuance - AbeleTokenSale.sol

balanceOf variable which is being updated is a local variable of the

AbeleTokenSale contract. It does not issue real Abele Tokens from its own

independent contract.

Also, ETH_RATE is defined but never used. Use it appropreately.

Resolution:

Keep both token and crowdsale contracts separate. In the crowdsale contract,

just implement the interface of token contract and do all the token transfer

and other needed processes in the token contract. So, it would be contract to

contract communication.

Another option is to keep only one contract for token contrat and implement

crowdsale features into itself.

5.2 tokenReward variable is not initiated - AbeleTokenSale.sol

This variable never initiated. Ideally that should be done in constructor

function or create another function which can be called by owner and you

need to specify the token contract address to initiate this variable.

EtherAuthority Limited (www.EtherAuthority.io)

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

6.1: Use require condition in place of Assert - SafeMath Library

For any situation when this safemath will fail, then in that situation assert will

consume all the maximum gas.

This will give “surprise charges” to users who had reverted transactions and

had burned a lot of ether as a gas cost.

Require only consumes whatever gas used. So, require is always cheaper than

assert. Avoid using assert unless really necessary!

6.2: Non-initialized return value - AbeleToken.sol contract

transfer() function doesn't initialize return value. As a result, default value will

be returned.

Many DEX uses return value of transfer function to determine if token transfer

were done or not.

If transfer function does not return correct value, then your token would not

be compliant to many DEX you may wish to list in the futhre!

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Compiler version can be fixed - both contracts

The contract has lower solidity version than the current one. This version gap is

quite high in contract and there were many improvements afterwards.

So, it is good practice to deploy the contract having latest solidity version. The

solidity version at a time of audit is: 0.5.11

EtherAuthority Limited (www.EtherAuthority.io)

7.2: Deprecated elements – AbeleTokenSale.sol contract

The way constructor function was defined is conflict with the version. You

need to use “constructor” keyword to define constructor function.

And many other deprecated code attempts exist in contract.

7.3: Missing approval of ownership transfer:

This may be difficult to get control back if by mistake transferred to the wrong

address.

8. Very low severity vulnerabilities found

The presence of these things does not make any negative effect. But just to

clean up the code.

8.1: No explicit visibility - AbleTokenSale contract

Visibility is not specified at line #161, #122. Please note that this is not a big

issue as it takes default to “public”. But it's suggested to explicitly define

visibility to avoid confusion.

8.2: Unused Interface elements - AbleTokenSale contract

The contract ERC20, at line #16 has unused elements. No other elements are

used except transfer() function. so it’s better to remove them as not used

anywhere.

9. Gas Optimization Discussion

=> The Contract is most optimum for the gas cost. There is no gas expensive

loops, or logical unnecessary processes.

EtherAuthority Limited (www.EtherAuthority.io)

10. Discussions and improvements

10.1 approve() of ERC20 Standard

To prevent attack vectors regarding approve() like the one described here:

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh

4DYKjA_jp-RLM/edit , clients SHOULD make sure to create user interfaces in

such a way that they set the allowance first to 0 before setting it to another

value for the same spender. THOUGH the contract itself shouldn't enforce it, to

allow backwards compatibility with contracts deployed before

10.2 Consider adding ownership contracts

The Openzepelin ownable contract has default issue. The ownable contracts

much implement the “accepting ownership” logic when transferring the

ownership. This prevents sending ownership to incorrect contracts as we seen

that ruined many contracts!

10.3 Consider adding Safeguard function

In any unexpected events, owner of the contract can put safeguard (halt token

movement). Once the problem is resolved, then the owner can lift the

safeguard and everything comes back to normal.

10.4 No instant token distribution

This vesting (crowdsale) contract does not make instant distribution of tokens

when someone sends ether to the contract address. as well as no proper

events in fallback function just to log all the ICO deposits.

EtherAuthority Limited (www.EtherAuthority.io)

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

11. Summary of the Audit

Overall, the code is ERC20 token implementation as well as vesting for ICO/IEO.

Compiler showed couple of warnings, as below:

Now, we checked that the warnings in purple division, are due to their static

analysis, which includes like gas estimations and all. So, it is important to

supply correct gas values while calling various functions.

Those warnings can be safely ignored as should be taken care while calling the

smart contract functions.

Please try to check the address and value of token externally before sending to

the solidity code.

It is also encouraged to run bug bounty program and let community help to

further polish the code to perfection.

EtherAuthority Limited (www.EtherAuthority.io)

