

SMART CONTRACT AUDIT REPORT

For

CryptoMinerFund (Order # 22OCT2018A)

Prepared By: Yogesh Padsala Prepared For: CryptoCloud solutions

Prepared on: 23/10/2018 https://minertoken.cloud

audit@etherauthority.io

Ether Authority Limited (www.EtherAuthority.io)

Table of Content

1. Disclaimer

2. Overview of the audit

3. Attacks made to the contract

4. Good things in smart contract

5. Critical vulnerabilities found in the contract

6. Medium vulnerabilities found in the contract

7. Low severity vulnerabilities found in the contract

8. Discussions and improvements

9. Summary of the audit

Ether Authority Limited (www.EtherAuthority.io)

1. Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only.

2. Overview of the audit

The project has following file:

• CryptoMinerFund.sol

It contains approx 179 lines of Solidity code. All the functions and state

variables are not well commented using the natspec documentation. However,

that does not raise any vulnerability. It just increases the readability.

The audit was performed by Yogesh Padsala, from EtherAuthority Limited.

Yogesh has extensive work experience of developing and auditing the smart

contracts.

The audit was based on the solidity compiler 0.4.25+commit.59dbf8f1 with

optimization enabled compiler in remix.ethereum.org

This audit was also performed the verification of the details exit in the main

website: https://minertoken.cloud

Ether Authority Limited (www.EtherAuthority.io)

3. Attacks tested on the contract

In order to check for the security of the contract, we tested several attacks in

order to make sure that the contract is secure and follows best practices.

3.1: Over and under flows

This contract does check for overflows and underflows by using

OpenZeppelin's SafeMath to mitigate this attack, and all the functions have

strong validations, which prevented this attack.

3.2: Short address attack

Although this contract is not vulnerable to this attack, It is highly

recommended to call functions after checking validity of the address from the

outside client.

3.3: Visibility & Delegatecall

Delegatecall is not used in the contract thus it does not have this vulnerability.

And visibility is mostly used properly. There are some places where it was not

used, but that does not raise any problems as well.

3.4: Reentrancy / TheDAO hack

Use of “require” function (in token contract) and Checks-Effects-Interactions

pattern in this smart contract mitigated this vulnerability.

3.5: Forcing ether to a contract

Here, the Smart Contract’s balance has never been used as guard, which

mitigated this vulnerability

3.6: Denial Of Service (DOS)

There is no process consuming loops in the contracts which can be used for

DoS attacks. Also, there is no progressing state based on external calls, and

thus this contract is not prone to DoS.

Ether Authority Limited (www.EtherAuthority.io)

4. Good things in the smart contract

4.1 Fallback function manipulation without ether

The fallback function can be called without sending ether which calls

requestPayDay() function. But the use of the good validations and logic, users

can not withdraw any funds.

4.1 Checks-Effects-Interactions pattern

While transferring ether, this contract does all the process first and then

transfers the ether. This is very good practice which prevents reentrancy

possibility. The function is: requestPayDay().

4.2 Declaring the variable as constant

If the state variables are not supposed to be changed, then it is good

practice to declare them as constant. It saves less gas compared to

the variables which are not declared as constant.

4.3 Minimum data stored in the contract

This contract stores very minimum amount of data in the smart contract,

which is really good thing as that minimize the gas cost to users of the contract

down the road.

Ether Authority Limited (www.EtherAuthority.io)

5. Critical vulnerabilities found in the contract

Critical issues that could damage heavily the integrity of the contract. Some

bug that would allow attackers to steal ether is a critical issue.

=> No critical vulnerabilities found

6. Medium vulnerabilities found in the contract

Those vulnerabilities that could damage the contract but with some kind of

limitations. Like a bug allowing people to modify a random variable.

=> No Medium vulnerabilities found

7. Low severity vulnerabilities found

Those do not damage the contract, but better to resolve and make code clean.

7.1: Compiler version should be fixed

Although, this is not a big issue, but the code has ‘open’ solidity compiler

version.

pragma solidity ^0.4.25; // bad: compiles w 0.4.17 and above

pragma solidity 0.4.25; // good : compiles w 0.4.17 only

It is recommended to follow the second example, as future compiler versions

may handle certain language constructions in a way the developer did not

foresee.

https://ethereum.stackexchange.com/questions/50071/solidity-best-

practices-which-compiler-version-should-i-use-advantages-dis

https://ethereum.stackexchange.com/questions/50071/solidity-best-practices-which-compiler-version-should-i-use-advantages-dis
https://ethereum.stackexchange.com/questions/50071/solidity-best-practices-which-compiler-version-should-i-use-advantages-dis

Ether Authority Limited (www.EtherAuthority.io)

7.2 Unchecked Math

Safemath library is included, which is good. But at some place, it is not used.

This is not a big issue, as validations are done well. But it is good practice to

use it at all the mathematical calculations. Following lines does not have

safemath used.

At line #66, please use:

walletDeposits[msg.sender]=walletDeposits[msg.sender].add(msg.value);

Same way at line #90, please use:

withdrawedAmounts[msg.sender]=withdrawedAmounts[msg.sender].add(

payDay);

Please implement Safemath at those places.

7.3 Implicit visibility level

The default function visibility level in Solidity is public. Explicitly define function

visibility to prevent confusion.

Please define visibility at these lines: #32, #29, #45, #39, #30, #41, #43, #44,

#46, #48, #49, #50

7.4 Use of contract ether balance

At line number #126 and #149, there is use of contract’s ether balance. Now,

there is nothing wrong with it as that is not used as the main logic of the

contract.

But just to aware that contract ether balance can be manipulated without

calling any fallback function.

For example, sending some ether to the contract using self-destruct. In that

case, users might slightly manipulate the phase percentage.

Ether Authority Limited (www.EtherAuthority.io)

7.5 Code optimization

The if…else condition at line number #65 is not needed because the

walletDeposits mapping gets updated regardless walletDeposits[msg.sender]

value is zero or not.

Also, the code at line #73, walletTimer[msg.sender] = now; runs regardless of

if..else condition above it, so it is no need to put that same line at #67

This entire code can be simply replaced by:

walletDeposits[msg.sender] = walletDeposits[msg.sender].add(msg.value);

walletTimer[msg.sender] = now;

Developer should keep in mind that a single line of code increase gas cost to

users and that may accumulate into huge sum in the future.

Ether Authority Limited (www.EtherAuthority.io)

8. Discussions and improvements

8.1 Putting higher degree of control

It is good idea to put ability for owner to put safeguard in the code. So, let’s say

for example, there would be any un-intended event occurred in the future,

then owner can put a safeguard and which prevents all the process from

happening until the issue is resolved.

This can be easily achieved by declaring a variable for that, which can be used

in all the functions. Admin can make this variable true or false. Another way is

to create modifier for that and use it in every function.

8.2 Ability to change _parojectMarketing address

It is good idea to have a function where admin or owner can change this

address where all the referral bonus is going.

This is rather useful in any un-expected event where the key of this wallet

address is stolen or lost.

Creating a modifier ‘onlyOwner’ also would do the trick!

8.3 Timestamp dependence awareness

This contract depends on the timestamp as places like #67 and #73. There is

nothing wrong in that but please be aware that the timestamp of the block can

be slightly manipulated by the miner.

8.4 Name of HourglassInterface Interface

It is good for readability, that the name, HourglassInterface would be renamed

to something meaningful as it reference to CMT Contract.

As like: CMTContractInterface

Ether Authority Limited (www.EtherAuthority.io)

9. Summary of the Audit

Overall the code performs good data validations as well as meets the

calculations according to the information presented in the website:

https://minertoken.cloud

The compiler also displayed 6 warnings:

Now, we checked those warnings are due to their static analysis, which

includes like gas errors and all. So, it is important to supply correct gas values

while calling various functions.

Those warnings can be safely ignored as should be taken care while calling the

smart contract functions.

Please try to check the address and value of token externally before sending to

the solidity code.

It is also encouraged to run bug bounty program and let community help to

further polish the code to the perfection.

